SECTION 033053 - MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes cast-in-place concrete, including reinforcement, concrete materials, mixture design, placement procedures, and finishes.
 B. Related Requirements:
 1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Design Mixtures: For each concrete mixture.

1.4 QUALITY ASSURANCE
 A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL
 A. Comply with the following sections of ACI 301 (ACI 301M) unless modified by requirements in the Contract Documents:
 1. "General Requirements."
 2. "Formwork and Formwork Accessories."
 3. "Reinforcement and Reinforcement Supports."
 4. "Concrete Mixtures."
 5. "Handling, Placing, and Constructing."
 B. Comply with ACI 117 (ACI 117M).
2.2 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
B. Plain-Steel Wire: ASTM A 1064/A 1064M, as drawn.
C. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from as-drawn steel wire into flat sheets.

2.3 CONCRETE MATERIALS

A. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
B. Cementitious Materials:
 1. Portland Cement: ASTM C 150/C 150M, Type I
 2. Retain supplementary cementing materials in "Fly Ash" and "Slag Cement" subparagraphs below if permitted. Ready-mix-concrete manufacturer blends these materials with portland cement. Fly ash, slag cement, or pozzolanic materials may slow rate of concrete strengthening and affect color uniformity.
 3. Fly Ash: ASTM C 618, Class C or F.
 4. Slag Cement: ASTM C 989/C 989M, Grade 100 or 120.
C. Normal-Weight Aggregate: ASTM C 33/C 33M, 1-inch (25-mm) nominal maximum aggregate size.
D. Air-Entraining Admixture: ASTM C 260/C 260M.
E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
F. Water: ASTM C 94/C 94M.
2.4 FIBER REINFORCEMENT

A. Synthetic Micro-Fiber: Monofilament or fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) long.

2.5 RELATED MATERIALS

A. Vapor Retarder: Plastic sheet, ASTM E 1745, Class A or B.
B. Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils (0.25 mm) thick; or plastic sheet, ASTM E 1745, Class C.
C. Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or self-expanding cork.

2.6 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.
B. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth or cotton mats.
C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
D. Water: Potable.
E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

2.7 CONCRETE MIXTURES

A. Comply with ACI 301 (ACI 301M).
B. Normal-Weight Concrete:
 1. Minimum Compressive Strength: 3000 psi (20.7 MPa) at 28 days.
 2. Maximum W/C Ratio: 0.45
 3. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
 4. Slump Limit: 4 inches (100 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch (25 mm).
 5. Air Content: Maintain within range permitted by ACI 301 (ACI 301M). Do not allow air content of trowel-finished floor slabs to exceed 3 percent.
C. Synthetic Fiber: Uniformly disperse in concrete mix at manufacturer's recommended rate, but not less than a rate of 1.0 lb/cu. yd. (0.60 kg/cu. m).
2.8 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and furnish batch ticket information.

1. When air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For mixer capacity of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
2. For mixer capacity larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mix type, mix time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION

A. Design, construct, erect, brace, and maintain formwork according to ACI 301 (ACI 301M).

3.2 EMBEDDED ITEM INSTALLATION

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR-RETARDER INSTALLATION

A. Install, protect, and repair vapor retarders according to ASTM E 1643; place sheets in position with longest dimension parallel with direction of pour.

1. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended adhesive or joint tape.

3.4 STEEL REINFORCEMENT INSTALLATION

A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
3.5 JOINTS
 A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
 B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

3.6 CONCRETE PLACEMENT
 A. Comply with ACI 301 (ACI 301M) for placing concrete.
 B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301 (ACI 301M).
 C. Do not add water to concrete during delivery, at Project site, or during placement.
 D. Consolidate concrete with mechanical vibrating equipment according to ACI 301 (ACI 301M).
 E. Equipment Bases and Foundations:
 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 2. Construct concrete bases 6 inches ((150 mm)) high unless otherwise indicated; and extend base not less than 3 inches (150 mm) in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 3. Minimum Compressive Strength: 3000 psi (20.7 MPa) at 28 days.
 4. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor them into structural concrete substrate.
 5. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 6. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.7 FINISHING FORMED SURFACES
 A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections exceeding 1/2 inch (13 mm).

3.8 FINISHING UNFORMED SURFACES
 A. General: Comply with ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
 B. Screed surfaces with a straightedge and strike off. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane before excess moisture or bleedwater appears on surface.
 1. Do not further disturb surfaces before starting finishing operations.
C. Slip-Resistive Broom Finish: Apply a slip-resistive finish to surfaces indicated and to exterior concrete platforms, steps, and ramps. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.

3.9 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and with ACI 301 (ACI 301M) for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

D. Curing Methods: Cure formed and unformed concrete for at least seven days by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests: Perform according to ACI 301 (ACI 301M).

1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 1 cu. yd. (4 cu. M).

END OF SECTION 033053