SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. Refer to Section 23 05 00. All work of Division 21 shall be in accordance with the corresponding section of Division 23, unless otherwise addressed in this Division.

END OF SECTION 210500
SECTION 211000 – WATER BASED FIRE PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

 A. This Section specifies automatic sprinkler systems for buildings and structures. Materials and equipment specified in this Section include:
 1. Pipe, fittings, valves and specialties.
 2. Sprinklers and accessories.

 B. The work of this section includes engineering by the Contractor. The Contractor shall act as Engineer of record for all fire protection work.

 C. The fire protection system work is an extension of the existing fire protection system. Provide all modifications to the existing system as required to complete the new work. Provide hydraulic calculations and shop drawings where required by the extent of the work or by the authority having jurisdiction.

1.2 DEFINITIONS:

 A. Pipe sizes used in this Specification are Nominal Pipe Size (NPS).

 B. Other definitions for fire protection systems are listed in NFPA Standards 13, 13R, 14, 20 and 24.

 C. Working plans as used in this Section means those documents (including drawings and calculations) prepared pursuant to the requirements contained in NFPA 13 and 14 for obtaining approval of the authority having jurisdiction.

1.3 SYSTEM DESCRIPTION:

 A. Provide a complete fire sprinkler system for the entire building (including, but not limited to, electrical rooms, mechanical penthouses and accessible sections of air handling units,) except designated areas as shown on the drawings which will not require fire sprinkler coverage will be specifically noted with "No A/S"

 B. Fire protection system is a "wet-pipe" system employing automatic sprinklers attached to a piping system containing water and connected to a water supply so that water discharges immediately from sprinklers opened by fire.

1.4 PROJECT SEISMIC REQUIREMENTS:

 A. All fire protection systems shall be installed to meet NFPA requirements. Refer to structural drawings for seismic design requirements.

 1. Where any conflicts arise the more stringent requirements shall be applicable.

1.5 SUBMITTALS:

 A. Product data for each type sprinkler head, valve, piping and piping specialty, fire protection specialty, fire department connection and any equipment installed in accordance with the Contract Documents. Index per specification chapter and item number.
B. Shop drawings prepared in accordance with NFPA 13 identified as "working plans," including detailed riser schematics indicating pipe sizes and lengths; and hydraulic calculations where applicable, which have been approved by the authority having jurisdiction. Do not proceed with the installation of the work until the Architect/Engineer review of shop drawings is received.

C. Contractor shall stamp shop drawings indicating compliance with applicable codes and contract drawings. Contractor shall stamp drawing "Approved for Construction."

D. If more than two submittals (either for shop drawings or for record drawings) are made by the contractor, the Owner reserves the right to charge the contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the contractor.

E. Maintenance data for each type sprinkler head, valve, piping specialty, fire protection specialty for inclusion in operating and maintenance manual specified in Division 1 and Division-23 Section "Common Work Results for Mechanical".

F. Welder's qualification certificate.

G. Test reports and certificates including "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Materials and Test Certificate for Underground Piping" as described in NFPA 13.

H. Provide hydraulic calculations and drawings stamped by a Registered Engineer licensed in the State where the project is located and familiar with this type of installation and with previous similar experience (practicing in the Fire Protection field) certifying that the fire sprinkler system has been designed and hydraulically calculated in compliance with NFPA and governing codes. NICET stamps are not acceptable.

I. Fire sprinkler piping design drawings shall show all ductwork, air devices, lighting and electrical panels.

J. Shop drawings and hydraulic calculations shall be stamped and signed by the local fire prevention authority prior to submitting shop drawings to the Architect/Engineer.

1.6 HYDRAULIC DESIGN:

A. The Fire Sprinkler System shall be hydraulically calculated by the Contractor. Pipe schedule method is acceptable only as allowed in NFPA 13.

B. The wet pipe fire sprinkler system for the building shall be hydraulically calculated to comply with NFPA-13 and the following criteria:

1. Light hazard occupancy for areas unless noted otherwise.

2. Ordinary hazard occupancy for the following:
 a. Where noted or shown on drawings.

C. The final fire protection system demand shall be a minimum of 10 PSI below the water supply curve.
D. Velocities in pipes shall be shown on hydraulic calculations. Velocities in overhead piping shall not exceed 32 feet per second. Velocities in underground piping shall not exceed 16 feet per second.

E. Allow 10 feet of loss for electric water flow switches and note on hydraulic calculations.

F. The Fire Protection Contractor shall provide as many sets of hydraulic calculations as necessary, performed and submitted to prove that the most remote and demanding areas are calculated.

G. Design information shall be permanently affixed to the main riser as described in NFPA-13.

H. The Fire Protection Contractor shall be responsible for water flow data from the appropriate water department. A copy of the water flow test data from the water department shall accompany the hydraulic calculations before hydraulically calculating equipment fire sprinkler system.

I. The pipe and valve sizes indicated on the drawings and details are minimum sizes to be used regardless of sizes allowed by hydraulic calculations.

1.7 QUALITY ASSURANCE:

A. Installer Qualifications: Installation and alterations of fire protection piping, equipment, specialties, and accessories, and repair and servicing of equipment shall be performed only by qualified installer. The term qualified means experienced in such work (experienced shall mean having a minimum of 5 previous projects similar in size and scope to this project), familiar with all precautions required, and has complied with all the requirements of the authority having jurisdiction. The contractor shall be licensed for the design and installation for the specific type of system in the jurisdiction where the work is to be performed and the State of Wyoming. Upon request, submit evidence of such qualifications to the Engineer. Refer to Division-1 Section: “Definitions and Standards” for definitions for “Installers.”

B. Qualifications for Welding Processes and Operators: Comply with the requirements of AWS D10.9, Specifications of Qualifications of Welding Procedures and Welders for Piping and Tubing, Level AR-3.”

C. Regulatory Requirements: Comply with the requirements of the following codes:

1. NFPA 13 - Standard for the installation of Sprinkler System, including applicable seismic requirements.
2. NFPA 13R - Standard for the Installation of Sprinkler Systems in residential occupancies up to four stories.
4. NFPA 24 - Installation of Private Fire Service Mains and their applications.
7. UL and FM Compliance: All fire protection system materials and components shall be Underwriter’s Laboratories and Factory Mutual listed as well as labeled for the application anticipated.
9. International Building Codes, including applicable seismic requirements.
10. Requirements of the local Building Department and Fire Department.
D. Reference and standards listed are minimum requirements. Where more stringent requirements are specified or noted on the drawings, this shall be applicable.

1.8 SEQUENCING AND SCHEDULING:

A. Schedule rough-in installations with installations of other building components.

B. Minimum time frame for notice of inspections, tests and meetings is five (5) days and list the persons to be notified.

1.9 EXTRA STOCK:

A. Heads: For each style and temperature range required, furnish additional sprinkler heads per NFPA-13.

 1. Obtain receipt from Owner that extra stock has been received.

B. Wrenches: Furnish 2 spanner wrenches for each type and size of valve connection and fire hose coupling.

PART 2 - PRODUCTS

2.1 MATERIALS AND PRODUCTS:

A. General: Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, temperature ratings, and capacities as indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in fire protection systems.

B. All equipment used on this project shall be new and UL listed unless noted or specified otherwise.

2.2 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide fire protection system products from one of the following:

 1. Gate Valves:

 a. Nibco
 b. Kennedy Valve
 c. Mueller
 d. Stockham
 e. Grinnell
 f. Milwaukee

 2. Swing Check Valves:

 a. Central
 b. Mueller
 c. Kennedy Valve
 d. Star Sprinkler Corp.
 e. Viking
f. Victaulic
g. Globe
h. Potter Roemer

3. Butterfly and Ball Valves:
 a. Grinnell
 b. Mueller
 c. Victaulic
 d. Milwaukee
 e. Kennedy

4. Grooved Mechanical Couplings:
 a. Gruvlok
 b. Victaulic Company of America
 c. Central Sprink, Inc.

5. Sprinkler Heads:
 a. Automatic Sprinkler Corp. of America.
 b. Central Sprinkler Corp.
 c. ITT Grinnell
 d. Reliable Automatic Sprinkler Co., Inc.
 e. Star Sprinkler Corp.
 f. Viking Corp.
 g. Globe

6. Fire Protection Specialties:
 c. Grinnell Fire Protection Systems Co., Inc.
 d. Grunau Sprinkler Mfgr. Co., Inc.
 e. Potter Roemer, Inc.

2.3 BASIC IDENTIFICATION:
A. General: Provide identification complying with Division-23 "Identification for Mechanical Systems", in accordance with the following listing:
 3. Fire Protection Signs: Provide the following signs:
 a. At each sprinkler valve, sign indicating what portion of system valve controls.
 b. At each outside alarm device, sign indicating what authority to call if device is activated.
 c. At door to each sprinkler control valves or at ceiling access points, sign reading "FIRE CONTROL".
 d. At each drain or test, sign indicating its purpose.

B. Attach to the riser a metal sign indicating the name, address and telephone number of the fire protection contractor. Also indicate the date of installation.
2.4 BASIC PIPING SPECIALTIES:

A. General: Provide piping specialties complying with Division-23 "Piping Specialties", in accordance with the following listing:

1. Pipe escutcheons.
2. Dielectric unions.
3. Drip pans.
4. Pipe sleeves.
5. Sleeve seals.
6. Fire Barrier Penetration Seals.

2.5 BASIC SUPPORTS AND ANCHORS:

A. General: Provide supports and anchors complying with Division-23 "Hangers for Supports for Mechanical Piping & Equipment" in accordance with the following listing:

1. Adjustable steel clevis hangers, adjustable steel band hangers, or adjustable band hangers, for horizontal-piping hangers and supports.
2. Two-bolt riser clamps for vertical piping supports.
3. Steel turnbuckles and malleable iron sockets for hanger-rod attachments.
4. Concrete inserts, top-beam C-clamps, side beam or channel clamps or center beam clamps for building attachments.
5. Concrete inserts and other type hangers penetrating into or through structural members shall be submitted (by the Fire Protection Contractor) to and have the approval of the structural engineer contracted for this project.
6. Powder driven studs shall not be allowed.
7. Hangers (which are acceptable for project) and hanger spacing shall be in accordance with NFPA-13.

2.6 PIPE AND TUBING MATERIALS (INSIDE BUILDING):

A. General: Refer to Part 3 Article "Pipe Applications" for identification of systems where the below specified pipe and fitting materials are used.

B. Steel Pipe: ASTM A 53, A795 or A135, Schedule 40 or Schedule 10, U.S. manufacture, black steel pipe, plain ends.

C. American Tube Company "Dyna-Thread-40" and "Dyna-Flow" and Allied Tube and Conduit Corporation "Super Flo" are acceptable to Schedule 40 pipe. Installation shall be per manufacturer's recommendations.

D. Schedule 5 pipe shall not be allowed.

E. The Corrosion Resistance Ratio of the pipe shall be 1.00 or greater. Documentation shall be presented with product submittal.

F. Schedule 10 pipe shall only be allowed for pipe sizes 2-1/2inches and larger.

G. Provide galvanized, schedule 40, piping system for preaction system and drain risers.
2.7 FITTINGS (INSIDE BUILDING):

B. Malleable-Iron Threaded Fittings: ANSI B16.3, Class 300, standard pattern, for threaded joints. Threads shall conform to ANSI B1.20.1. Install steel pipe with threaded joints and fittings for 2 inches and smaller and where shown on drawings.

C. Steel Fittings: ASTM A234, seamless or welded, for welded joints.

D. Grooved Mechanical Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47 Grade 32510 malleable iron; or ASTM A53, Type F or Types E or S.

E. Grooved Mechanical Couplings: Consist of ductile or malleable iron housing, a synthetic rubber gasket of a central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure roll-grooved pipe and fittings. Grooved mechanical couplings including gaskets used on dry-pipe systems shall be listed for dry-pipe service.

F. Grooved Mechanical Fittings and Couplings for the entire fire protection system shall be of the same manufacturer as submitted in shop drawing equipment review.

G. Cast-Iron Threaded Flanges: ANSI B16.1, Class 250; raised ground face, bolt spot faced.

H. Cast Bronze Flanges: ANSI B16.24, Class 300; raised ground face, bolt holes spot faced.

I. Plain end, hooker type, or push-on fittings or couplings shall not be allowed.

J. Bushings and reducing couplings shall not be allowed.

K. UL listed and Factory Mutual approved segmentally welded fittings are acceptable. Friction loss and flow data shall accompany hydraulic calculations.

2.8 JOINING MATERIALS:

A. Welding Materials: Comply with Section II, Part C, ASME Boiler and Pressure Vessel Code for welding materials appropriate for the wall thickness and chemical analysis of the pipe being welded.

B. Gasket Materials: Thickness, materials and type suitable for fluid or gas to be handled, and design temperatures and pressures.

2.9 GENERAL DUTY VALVES:

A. Gate Valves - 2 Inch and Smaller: Body and bonnet of cast bronze, 175 pound cold water working pressure - non-shock, threaded ends, solid wedge, outside screw and yoke, rising stem, screw-in bonnet, and malleable iron handwheel. Valves shall be capable of being repacked under pressure, with valve wide open.

B. Gate Valves - 2-1/2 Inch and Larger: Iron body; bronze mounted, 175 pound cold water working pressure - non-shock. Valves shall have solid taper wedge; outside screw and yoke, rising stem; flanged bonnet, with body and bonnet conforming to ASTM A 126 Class B; replaceable bronze wedge facing rings; flanged ends; and a packing assembly consisting of
cast iron gland flange, brass gland, packing, bonnet, and bronze bonnet bushing. Valves shall be capable of being repacked under pressure, with valve wide open.

C. Butterfly Valves: 2-1/2 inches to 12 inches, grooved, ductile iron body and disc ASTM-536, disc EPDM coated, listed and approved minimum 175 psi service, actuator, self-contained supervisory switch, weatherproof approved for indoor or outdoor use.

D. Ball Valves: 1-1/2 inches and smaller shall be threaded, forged brass construction, with Teflon seats and blow out proof stem. Ball shall be full port with chrome plated ball.

E. Ball Valves: 2 inches to 3 inches shall be listed to 300 p.s.i. with optional internal tamper switch. Body shall be ductile iron with corrosion resistant coating. Ball shall be 316 stainless steel, standard port design.

F. Swing Check Valves: MSS SP-71; Class 175, cast iron body and bolted cap conforming to ASTM A 126, Class B; horizontal swing, with a bronze disc or cast iron disc with bronze disc ring, and flanged ends. Valve shall be capable of being refitted while the valve remains in the line.

2.10 BASIC METERS AND GAUGES:

A. General: Provide meters and gauges complying with Division- 23 "Meters and Gauges for Mechanical Piping", in accordance with the following listing

1. Pressure gauges, 0-250 psi range.

2.11 ALARM DEVICE AND FIRE PROTECTION SPECIALTIES:

A. General: Provide fire protection specialties, UL-listed, in accordance with the listing. Provide sizes and types which mate and match piping and equipment connections.

B. Water Flow Indicators: Vane type water flow detector, rated to 250 psig; designed for horizontal or vertical installation; have 2-SPDT circuit switches to provide isolated alarm and auxiliary contacts, 7 ampere 125 volts AC and 0.25 ampere 24 volts DC; complete with factory-set field-adjustable retard element to prevent false signals, tamper-proof cover which sends a signal when cover is removed, and with activation time retarding capability set at 30 seconds. The setting shall be verified through the inspectors test prior to final inspection.

C. Supervisory Switches: Provide products recommended by manufacturer for use in service indicated. SPST, normally closed contacts, designed to signal valve in other than full open position.

D. Pressure Switch: Indicating low pressure trouble in sprinkler system.

E. Pressure switch: Indicating flow in sprinkler system.

F. Low Air Pressure Horn: Provide low air pressure horn as indicated.

2.12 AUTOMATIC SPRINKLERS:

A. Sprinkler Heads: Fusible link or frangible bulb type, and style as indicated or required by the application. Unless otherwise indicated, provide heads with nominal ½ inch discharge orifice, for "ordinary" temperature range with a minimum temperature of 155 degrees F. Provide
“intermediate” temperature heads in Electrical rooms, where required as noted in NFPA 13, and as required by the Authority having jurisdiction.

B. Sprinkler Head Finishes: Provide heads with the following finishes:

1. Upright, Pendent and Sidewall Styles: Factory brass, rough bronze finish for heads in unfinished spaces. Heads shall be stainless steel where installed exposed to acids, chemicals, or other corrosive fumes.

2. Concealed Style: Rough brass, adjustable, with painted white cover plate in finished spaces. Recessed Style: Bright chrome, with bright chrome escutcheon plate.

3. See drawings for additional sprinkler type requirements.

C. Sprinkler Head Cabinet and Wrench: Finished steel cabinet, suitable for wall mounting, with hinged cover and space for spare sprinkler heads plus sprinkler head wrench. Provide amounts of each style per NFPA-13. Locate head cabinet on shop drawing submittal.

D. Plastic fire sprinkler escutcheons are not acceptable.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Examine rough-in for fire hose valves and cabinets to verify actual locations of piping connections prior to installing cabinets.

B. Examine walls for suitable conditions where cabinets are to be installed.

C. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PIPE APPLICATIONS:

A. Install Schedule 40 steel pipe with threaded joints and fittings for 2 inches and smaller.

B. Install Schedule 40 steel pipe with roll-grooved ends and grooved mechanical coupling or with threaded joints and fittings.

3.3 PIPING INSTALLATIONS:

A. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. So far as practical, install piping as indicated. Drawings are diagrammatic in character and do not necessarily indicate every required offset, valve, fitting, etc.

1. Deviations from approved “working plans” for sprinkler piping require written approval of the authority having jurisdiction. Written approval shall be on file with the Engineer prior to deviating from the approved “working plans.”

B. Install sprinkler piping to provide for system drainage in accordance with NFPA 13.

C. Use approved fittings to make all changes in direction, branch takeoffs from mains, and reductions in pipe sizes. Welded outlet branch pipe fittings are acceptable.

D. Install unions in pipe 2 inch and smaller, adjacent to each valve. Unions are not required on flanged devices or in piping installations using grooved mechanical couplings.
E. Install flanges or flange adapters on valves, apparatus, and equipment having 2-1/2 inch and larger connections.

F. For welded pipe, all cutouts (coupons) shall be removed prior to installation.

G. Hangers and Supports: Comply with the requirements of NFPA 13. Hanger and support spacing and locations for piping joined with grooved mechanical couplings shall be in accordance with the grooved mechanical coupling manufacturer's written instructions, for rigid systems. Provide protection from damage where subject to earthquake in accordance with NFPA 13.

H. All piping penetrating walls to structure shall be sleeved and sealed per specification Section 23 05 09 “Mechanical Fire Stopping” and Section 23 05 18 “Piping Specialties”.

I. Install test connections sized and located in accordance with NFPA 13 complete with shutoff valve. Test connections may also serve as drain pipes.

J. Install pressure gauge on the riser or feed main at or near each test connection. Provide gauge with a connection not less than ¼” and having a soft metal seated globe valve, arranged for draining pipe between gauge and valve. Install gauges to permit removal, and where they will not be subject to freezing.

K. The fire line entry valves shall have monitoring electrical switches, the wiring from which shall be carried to the fire annunciating panel.

L. The fire protection contractor shall be responsible for the coordination of his installation with all other contractors. See Section 23 05 00 for prioritized components.

M. Protect adjacent area where pipe cutting and threading takes place (e.g. floors, ceilings, walls, etc.).

N. There shall be no fire sprinkler piping in electrical rooms (other than piping serving sprinklers directly in that room) or installed over any electrical panels.

O. Provide spring-loaded check valve at top of drain risers.

P. Install hangers straight and true and piping parallel to building lines.

3.4 PIPE JOINT CONSTRUCTION:

A. Welded Joints: AWS D10.9, Level AR-3.

B. Threaded Joints: Conform to ANSI B1.20.1, tapered pipe threads for field cut threads. Join pipe, fittings, and valves as follows:

1. Note the internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint.
2. Align threads at point of assembly.
3. Apply appropriate tape or thread compound to the external pipe threads.
4. Assemble joint to appropriate thread depth. When using a wrench on valves place the wrench on the valve end into which the pipe is being threaded.
5. Damaged Threads: Do not use pipe with threads which are corroded or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.
C. **Flanged Joints:** Align flange surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly to appropriate torque specified by the bolt manufacturer.

D. **Mechanical Grooved Joints:** Roll grooves on pipe ends dimensionally compatible with the couplings.

E. **End Treatment:** After cutting pipe lengths, remove burrs and fins from pipe ends.

3.5 VALVE INSTALLATIONS:

A. **General:** Install fire protection specialty valves, fittings and specialties in accordance with the manufacturer's written instructions, NFPA 13 and the authority having jurisdiction.

B. **Gate Valves:** Install electronically supervised-open indicating valves so located to control all sources of water supply except fire department and roof manifolds connections. Where there is more than one control valve, provide permanently marked identification signs indicating the portion of the system controlled by each valve. Refer to Division-23 Section "Identification for Mechanical Systems" for valve tags and signs.

C. Install approved check valve assembly reduced pressure backflow preventer in each water supply connection. Provide check valve and indicating valve (with tamper switch) on the discharge side of reduced pressure backflow preventers.

3.6 SPRINKLER HEAD INSTALLATIONS:

A. Any sprinkler heads with any paint on them shall be replaced. The sprinkler system shall then be hydrostatically tested again at the contractor's expense.

B. Sprinkler heads shall be positioned so as to comply with NFPA-13 for any obstructions. This includes, but is not limited to, soffits, surface mounted lights and indirect lighting arrangements. The Fire Protection Contractor is responsible for identifying these obstructions and designing the system accordingly.

C. Run piping concealed above heated furred ceilings and in joists to minimize obstructions. Expose only heads.

D. Protect exposed sprinkler heads against mechanical injury with standard guards. Provide sprinkler head guards in all mechanical, electrical or storage rooms as well as exposed pendant heads which are installed less than 8feet-0inches A.F.F.

E. Provide 1 inch diameter nipple and 1 inch x 1/2 inch reducing fitting for each upright head. (Excluding mechanical equipment rooms.)

F. Provide heads in "pocketed" areas caused by exposed duct, piping or beams.

G. Sprinkler head deflector distance from face of finished ceiling shall not exceed 4inches.

H. Sprinkler heads shall be located in the center of all 2 foot x 2 foot ceiling tiles and quarter points, along the center line lengthwise of 2 foot x 4 foot ceiling tiles.

I. Use proper tools to prevent damage during installations.
J. Install sprinkler piping in a manner such that mechanical equipment, ceiling tiles or lights can be accessed and easily removed. The sprinkler piping shall be installed to provide a minimum of 6 inches above the top of a finished ceiling.

K. Minimum fire sprinkler head temperature rating for sprinklers in electrical rooms shall be 212 degrees F. Keep sprinklers as far from transformers and/or panels as spacing allows.

3.7 INSTALLATION OF BASIC IDENTIFICATION:

A. General: Install mechanical identification in accordance with Division-23 Identification for Mechanical Systems”.

B. Install fire protection signs on piping in accordance with NFPA 13 and NFPA 14 requirements.

3.8 INSTALLATION OF METERS AND GAUGES:

A. Install meters and gauges in accordance with Division-23 “Meters and Gauges for Mechanical Piping”.

3.9 FIELD QUALITY CONTROL:

A. Flush, test and inspect sprinkler piping systems in accordance with NFPA 13, Standard for installation of sprinkler systems.

B. The Fire Protection Contractor shall conduct and bear the costs of all necessary tests of the fire protection work, furnish all labor, power and equipment. All piping shall be tested with water as required, the tests witnessed by the authority having jurisdiction.

C. The fire protection piping shall be tested under a hydrostatic pressure of not less than 200 psig, for a duration of not less than 2 hours.

D. Replace piping system components which do not pass the test procedures specified, and retest repaired portion of the system at Fire Protection Contractor’s expense.

E. All piping tests (pneumatic and hydrostatic) shall be conducted prior to the application of any painting materials. This will prevent hidden leaks and/or repainting of repaired/altered piping.

3.10 SYSTEM CERTIFICATION:

A. The Contractor shall provide the Owner with written certification prior to final inspection, that all new equipment:

1. Has been visually inspected and functionally tested as required by the Specifications.
2. Is installed entirely in accordance with the manufacturer’s recommendations within the limitations of the system’s UL listings and NFPA criteria.
3. Is in proper working order.

3.11 FINAL INSPECTION AND TESTING:

A. The Contractor shall make arrangements with the Owner for final inspection and witnessing of the final acceptance tests. The Fire Protection Contractor, the Alarm System Contractor and the Owner will conduct the final inspection and witness the final acceptance test.
B. All tests and inspections required by the referenced Codes and Standards, and the Owner shall be performed by the Contractor.

C. The inspecting committee as referenced above will visit the job site to inspect the work and witness the final acceptance tests when they have been advised by the Contractor that the work is completed and ready for test. If the work is not complete or the test is unsatisfactory, the Contractor shall be responsible for the Consultant's extra time and expenses for re-inspection and witnessing the re-testing of the work. Such extra fees shall be deducted from payments by the Owner to the Contractor.

D. After the system has been inspected and tested, a certificate, "Contractor's Material and Test Certificate Sprinkler System - Water Spray System," shall be provided by the contractor and shall be signed by him or his representative, the Owner's representative and by a representative of the fire department if appropriate. Sufficient copies shall be prepared to ensure the Engineer, Owner, all inspecting authorities and the contractor have a copy for their files. The Contractor shall prepare one (1) test report for each inspection performed whether successful or not.

E. The signing of the certificate by the Owner's representative shall in no way prejudice any claim against the contractor for faulty material, poor workmanship, or failure to comply with inspecting authority's requirements or local ordinances.

F. Contractor shall provide at least five (5) working days’ notice for all tests.

G. All sprinkler supervisory initiating devices shall be functionally tested to verify proper operation.

H. All supervisory functions of each initiating device shall be functionally tested.

I. Receipt of all alarm and trouble signals, initiated during the course of the testing, shall be verified at the fire alarm control panel.

3.12 WORK BY OTHERS:

A. Wiring of all water flow switches and tamper switches on valves to central alarm panel are by Division 26.

3.13 OPERATION AND MAINTENANCE MANUAL:

A. The Contractor shall provide the Owner with a loose-leaf manual containing:

1. A detailed description of the systems.
2. A detailed description of routine maintenance required or recommended or which would be provided under a maintenance contract including a maintenance schedule and detailed maintenance instructions for each type of device installed.
3. One copy of NFPA-25.
4. Manufacturers’ data sheets and installation manuals/instructions for all equipment installed.
5. A list of recommended spare parts.
6. Service directory, listing the specific equipment items and where parts can be obtained, with name, address and telephone number.
7. Full size sepias of the record drawings (stamped and signed per section 1.6).
8. Hydraulic calculations (stamped and signed per section 1.6).
B. Refer to Division 1 and Section 23 05 00 "OPERATING AND MAINTENANCE" for additional requirements.

C. Within 15 days of the completion of the work, six (6) copies of the manual shall be submitted for approval.

3.14 RECORD DRAWINGS:

A. The Contractor shall provide and maintain on the site an up-to-date record set of approved shop drawing prints which shall be marked to show each and every change made to the sprinkler system from the original approved shop drawings. This shall not be construed as authorization to deviate from or make changes to the shop drawings approved by the Owner without written instruction from the Owner in each case. This set of drawings shall be used only as a record set.

B. Upon completion of the work, the record set of prints shall be used to prepare complete, accurate final record drawings reflecting any and all changes and deviations made to the sprinkler system.

C. The Owner, at his option and at the Contractor's expense, may require revised hydraulic calculations depending on the extent and nature of field changes.

D. The Record Drawings and Hydraulic Calculations shall have the signed stamp of a professional engineer registered in the State of Wyoming certifying the Record Drawings and the Hydraulic Calculations accurately represent the completed fire protection system.

E. Upon completion of the work, two sets of blueline record drawings shall be submitted to the Owner for review.

3.15 GUARANTEE PERIOD:

A. Guarantee: The Contractor shall guarantee all materials and workmanship for a period of one year beginning with the date of final acceptance by the Owner. The Contractor shall be responsible during the design, installation, testing and guarantee periods for any damage caused by him (or his subcontractors) or by defects in his (or his subcontractors') work, materials, or equipment.

B. Emergency Service: During the installation and warranty period, the Contractor shall provide emergency repair service for the sprinkler system within four hours of a request by the Owner for such service. This service shall be provided on a 24 hour per day, seven days per week basis.

3.16 TRAINING:

A. The Contractor shall conduct two (2) training sessions of four (4) hours each to familiarize the building personnel with the features, operation and maintenance of the sprinkler systems. Training sessions shall be scheduled by the Owner at a time mutually agreeable to the Contractor and the Owner.
3.17 WATER DAMAGE:

A. The Fire Protection Contractor shall be responsible for any damage to the work of others, to building and property/ materials of others caused by leaks in automatic sprinkler equipment, unplugged or disconnected pipes or fittings, and shall pay for necessary replacement or repair of work or items so damaged during the installation, testing or guarantee periods of the automatic sprinkler work.

END OF SECTION 211000
SECTION 230500 - COMMON WORK RESULTS FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. All drawings associated with the entire project, including general provisions of the Contract, including The General Conditions of the Contract for Construction, General and Supplementary Conditions and Division-1 Conditions specification sections shall apply to the Division 21, 22, and 23 specifications and drawings. The Contractor shall be responsible for reviewing and becoming familiar with the aforementioned and all other Contract Documents associated with the project.

B. Related Sections: Refer to all sections in Division 21, 22, and 23. Refer to Division 26 specification sections and Division 26 drawings.

C. Where contradictions occur between this section and Division 1, the more stringent requirement shall apply.

D. Contractor shall be defined as any and all entities involved with the construction of the project.

1.2 SUMMARY:

A. This Section specifies the basic requirements for mechanical installations and includes requirements common to more than one section of Divisions 21, 22, and 23. It expands and supplements the requirements specified in Division 1.

1.3 MECHANICAL INSTALLATIONS:

A. The Contract Documents are diagrammatic, showing certain physical relationships which must be established within the mechanical work and its interface with all other work. Such establishment is the exclusive responsibility of the Contractor. Drawings shall not be scaled for the purpose of establishing material quantities.

B. Drawings and specifications are complementary. Whatever is called for in either is binding as though called for in both. Report any discrepancies to the Engineer and obtain written instructions before proceeding. Where any contradictions occur between the specifications and the drawings the more stringent requirement shall apply. The contractor shall include pricing for the more stringent and expensive requirements.

C. Drawings shall not be scaled for rough-in measurements or used as shop drawings. Where drawings are required for these purposes or have to be made from field measurement, Contractor shall take the necessary measurements and prepare the drawings.

D. The exact location for some items in this specification may not be shown on the drawings. The location of such items may be established by the Engineer during the progress of the work.

E. The contract documents indicate required size and points of terminations of pipes, and suggest proper routes to conform to structure, avoid obstructions and preserve clearances. It is not intended that drawings indicate necessary offsets. The contractor shall make the installation in such a manner as to conform to the structure, avoid
obstructions, preserve headroom and keep openings and passageways clear, without further instructions or costs to the Owner. All equipment shall be installed so access is maintained for serviceability.

F. Before any work is installed, determine that equipment will properly fit the space; that required piping grades can be maintained and that ductwork can be run as intended without interferences between systems, structural elements or work of other trades.

G. Verify all dimensions by field measurements.

H. Coordinate installation in chases, slots and openings with all other building components to allow for proper mechanical installations.

I. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring positioning prior to closing-in the building.

J. Where mounting heights are not detailed or dimensioned, install mechanical services and overhead equipment to provide the maximum headroom possible.

K. Install mechanical equipment to facilitate maintenance and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.

L. Make allowance for expansion and contraction for all building components and piping systems that are subject to such.

M. The ceiling space shall not be “layered”. It is the contractor’s responsibility to offset and system as required to allow installation within the identified ceiling cavity. The contractor shall include labor and material in the base bid to accommodate such offsets.

N. In general, all “static” piping systems shall be routed as high as possible, i.e. fire protection systems. Keep all equipment in accessible areas such as corridors and coordinate with systems and equipment from other sections.

O. The Contractor shall provide all labor and material necessary but not limited to the starting/stopping of all mechanical equipment, opening/closing of all valves, draining/refilling all mechanical systems and operating/verifying the operation of all mechanical systems controls as required to accomplish all work necessary to meet construction document requirements. Contractor shall submit records of such activities to engineer and include in the O & M manuals.

1.4 COORDINATION:

A. Work out all installation conditions in advance of installation. The Contractor shall be responsible for preparing coordination drawings, showing all work, in all areas. The Contractor shall be responsible for providing all labor and material, including but not limited to all fittings, isolation valves, offsets, hangers, control devices, etc., necessary to overcome congested conditions at no increase in contract sum. The Contractors base bid shall include any and all time and manpower necessary to develop such coordination efforts and drawings. Increases to contract sum or schedule shall not be considered for such effort.
B. Provide proper documentation of equipment, product data and shop drawings to all entities involved in the project. Coordination shall include, but not be limited to the following:

1. Fire Protection and Fire Alarm Contractor shall provide shop drawings to all other Division 21 and 23 Contractors.
2. Automatic Temperature Controls, Building Management and Testing, Adjusting and Balancing Contractors shall be provided with equipment product data and shop drawings from other Division 21, 22, 23 and 26 Contractors and shall furnish the same information involving control devices to the appropriate Division 21, 22, and 23 Contractor.

C. Existing Conditions:

1. Carefully survey existing conditions prior to bidding work.
2. Provide proper coordination of mechanical work with existing conditions.
3. Report any issues or conflicts immediately to Engineer before commencing with work and prior to purchasing equipment and materials.

1.5 COORDINATION WITH OTHER DIVISIONS:

A. General:

1. Coordinate all work to conform to the progress of the work of other trades.
2. Complete the entire installation as soon as the condition of the building will permit. No extras will be allowed for corrections of ill-timed work, when such corrections are required for proper installation of other work.

B. Coordinate ceiling cavity space carefully with all trades. In the event of conflict, install mechanical and electrical systems within the cavity space allocation in the following order of priority:

1. Equipment and required clearances
2. Ductwork mains
3. Plumbing vent piping
4. Low pressure ductwork and air devices.
5. Electrical and communication conduits, raceways and cable trays.
6. Domestic hot and cold water
7. Hydronic piping
8. Fire sprinkler mains, branch piping and drops (locate as tight to structure as possible).
9. DDC control wiring and other low voltage systems.
10. Fire alarm systems.

C. Chases, Inserts and Openings:

1. Provide measurements, drawings and layouts so that openings, inserts and chases in new construction can be built in as construction progresses.
2. Check sizes and locations of openings provided. Including the access panels for equipment in hard lid ceilings and wall cavities.
3. Any cutting and patching made necessary by failure to provide measurements, drawings and layouts at the proper time shall be done at no additional cost in contract sum.
D. Support Dimensions: Provide dimensions and drawings so that concrete basis and other equipment supports to be provided under other sections of the specifications can be built at the proper time.

E. Coordinate the cutting and patching of building components to accommodate the installation of mechanical equipment and materials. Refer to Division 1 and Division 23.

F. Modifications required as result of failure to resolve interferences, provide correct coordination drawings or call attentions to changes required in other work as result of modifications shall be paid for by responsible Contractor/Subcontractor.

G. Coordination with Electrical Work: Refer to Division 1 and 26.

1.6 DESIGN WORK REQUIRED BY CONTRACTOR:

A. The construction of this project requires the Contractor to include the detailing and design of several systems and/or subsystems. All such design work associated with the development of the coordination drawings shall be the complete responsibility of the Contractor.

B. The Contractor shall take the full responsibility to develop and complete routing strategies which will allow fully coordinated system to be installed in a fully functional manner. The Engineers contract drawings shall be for system design intent and general configurations.

C. Systems or subsystems which require design responsibility by the contractor include but are not limited to:

1. Final coordinated distribution of duct, hydronic, plumbing and other systems within the ceiling cavity.
2. Any system not fully detailed
3. Fire protection systems
4. Equipment supports, hangers, anchors and seismic systems not fully detailed nor specified in these documents, or catalogued by the manufacturer.
5. Temperature controls systems

D. Design Limitations:

1. The Contractor shall not modify the Engineers design intent in any way.
2. The Contractor shall not change any pipe size or equipment size without prior written approval from the Engineer.
3. The Contractor shall conform to the SMACNA Duct Construction Standards when modifying the ductwork layout to avoid collisions.
4. Back to back 90° fittings on duct system shall not be installed under any circumstance.
5. Bull nosed tees on piping systems shall not be installed under any circumstance.

1.7 PROJECT CONDITIONS:

A. The Contractor shall attend a pre-bid walk-thru, when required under Division 01, and shall make themselves familiar with the existing conditions. No additional costs to the Owner shall be accepted for additional work for existing conditions.

B. Field verify all conditions prior to submitting bids.
C. Report any damaged equipment or systems to the Owner prior to any work.

D. Protect all mechanical and electrical work against theft, injury or damage from all causes until it has been tested and accepted.

E. Be responsible for all damage to the property of the Owner or to the work of other contractors during the construction and guarantee period. Repair or replace any part of the work which may show defect during one year from the final acceptance of all work, provided such defect is, in the opinion of the Architect, due to imperfect material or workmanship and not due to the Owner's carelessness or improper use.

F. The Contractor shall coordinate and co-operate with Owner at all times for all new to existing connections, system shutdowns and start-ups, flushing and filling both new and existing systems.

G. Coordinate all services shut-down with the Owner; provide temporary services. Coordinate any required disruptions with Owner, one week in advance.

H. Minimize disruptions to operation of mechanical systems in occupied areas.

1.8 SAFETY:

A. Refer to Division 1.

1.9 EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS:

A. Refer to Division 1 and conform with the Owners requirements.

1.10 REQUIREMENTS OF REGULATORY AGENCIES:

A. Refer to Division 1.

B. Execute and inspect all work in accordance with all Underwriters, local and state codes, rules and regulations applicable to the trade affected as a minimum, but if the plans and/or specifications call for requirements that exceed these rules and regulations, the greater requirement shall be followed. Follow recommendations of NFPA, SMACNA, EPA, OSHA and ASHRAE.

C. Comply with the local and state codes adopted by the Authorities Having Jurisdictions at the time of permit application, including referenced standards, amendments and policies. The following are the codes in effect:

1. 2015 International Building Code
2. 2015 International Fire Code including Appendix D, E, F, & G.
3. 2015 International Plumbing Code
4. 2015 International Mechanical Code
5. 2015 International Fuel Gas Code
6. 2015 International Existing Building Code
8. 2017 NFPA 70 National Electric Code

D. Comply with standards in effect at the date of these Contract Documents, except where a standard or specific date or edition is indicated.
E. The handling, removal and disposal of regulated refrigerants and other materials shall be in accordance with U.S. EPA, state and local regulations.

F. The handling, removal and disposal of lead based paint and other lead containing materials shall comply with EPA, OSHA, and any other Federal, State, or local regulations.

G. After entering into contract, Contractor will be held to complete all work necessary to meet these requirements without additional expense to the Owner.

1.11 PERMITS AND FEES:

A. Refer to Division 1.

B. Contractor shall arrange for and pay for all inspections, licenses and certificates required in connection with the work.

1.12 PRODUCT OPTIONS AND SUBSTITUTIONS:

A. Refer to the Instructions to Bidders and Division 1.

B. The burden of proof that proposed equipment is equal in size, capacity, performance, and other pertinent criteria for this specific installation, or superior to that specified is up to the Contractor. Substituted equipment will only be allowed where specifically listed in a written addendum. If substitutions are not granted, the specified materials and equipment must be installed. Where substituted equipment is allowed, it shall be the Contractor’s responsibility to notify all related trades of the accepted substitution and to assume full responsibility for all costs caused as a result of the substitution.

C. Materials and equipment of equivalent quality may be submitted for substituted prior to bidding. This may be done by submitting to the Architect/Engineer at least ten (10) working days prior to the bid date requesting prior review. This submittal shall include all data necessary for complete evaluation of the product.

1. Substitutions shall be allowed only upon the written approval of the Architect/Engineer NO EXCEPTIONS.
2. The Contractor shall be responsible for removal, replacement and remedy of any system or equipment which has been installed which does not meet the specifications or which does not have prior approval.

1.13 MECHANICAL SUBMITTALS:

A. General

1. Refer to the Conditions of the Contract (General and Supplementary), Division 1.
2. Contractor shall provide a submittal schedule appropriate for the size and schedule of the project. Limit the number of large submittals being reviewed at one time and coordinate timing of sections that are dependent on each other.
3. The Contractor shall identify any "long lead time" items which may impact the overall project schedule. If these submittal requirements affect the schedule, the Contractor shall identify the impacts and confer with the Engineer within two weeks of entering into the contract.
4. The front of each submittal package shall be identified with the specification section number, job name, Owner's project number, date, Prime Contractor and
Sub-Contractor's names, addresses, and contact information, etc. Each Specification Section shall be submitted individually and submittal shall be tabbed for the equipment/materials/etc. within the section. Submittals that are not complete with the required information will not be reviewed and will be sent back to be corrected.

5. Submittals shall be provided electronically. All electronic submittals need to be complete with all design information and stamped for conformity by the contractor. Submittals will be reviewed, marked appropriately and returned by the same means received.

6. An index shall be provided which includes:
 a. Product
 b. Plan Code (if applicable)
 c. Specification Section
 d. Manufacturer and Model Number

7. Submittal schedule shall be provided for review within four (4) working weeks from award of contract to successful bidder.

B. Basis of Design: The manufacturer's material or equipment listed in the schedule or identified by name on the drawings are the basis of design and provided for the establishment of size, capacity, grade and quality. If alternates are used in lieu of the scheduled names, the cost of any changes in construction required by their use shall be borne by Contractor.

C. Contractor Review: Submittal of shop drawings, product data and samples will be accepted only when submitted by and stamped by the General Contractor. Each submittal shall be reviewed by the contractor for general conformance with contract requirements and stamped by the respective contractor prior to submittal to the Architect/Engineer. Any submittal not stamped or complete will be sent back. Data submitted from Subcontractors and material suppliers directly to the Engineer will not be processed unless prior written approval is obtained by the Contractor.

D. Submittal Review Process: Before starting work, prepare and submit to the Architect/Engineer shop drawings and descriptive equipment data required for the project. Continue to submit in the stated format after each Architect/Engineer's action until a "No Exception Taken" or "Make Correction Noted" action is received. When a "Make Corrections Noted" is received, make the required corrections for inclusion in the Operating and Maintenance Manual (O&M). Submittals marked "Make Corrections Noted" shall not be resubmitted during the submittal process. Unless each item is identified with specification section and sufficient data to identify its compliance with the specifications and drawings, the item will be returned "Revise and Resubmit". Where an entire submittal package is returned for action by the Contractor, the Engineer may summarize comments in letter format and return the entire set. Submittals shall be prepared per the MECHANICAL SUBMITTAL CHECKLIST, at the end of this section; supplemental requirements are listed in each Division 21, 22, and 23 Sections.

E. The Design Professional's review and appropriate action on all submittals and shop drawings is only for the limited purpose of checking for conformance with the design concept and the information expressed in the contract documents. This review shall not include:

1. Accuracy or completeness of details, such as quantities, dimensions, weights or gauges, fabrication processes
2. Construction means or methods
3. Coordination of the work with other trades
4. Construction safety precautions

F. The Design Professional’s review shall be conducted with reasonable promptness while allowing sufficient time in the Design Professional’s judgment to permit adequate review. Review of a specific item shall not indicate that the Design Professional has reviewed the entire assembly of which the item is a component.

G. The Design Professional shall not be responsible for any deviations from the contract documents not brought specifically to the attention of the Design Professional in writing by the Contractor. This shall clearly identify the design and the specific element which vary from the Design. The Contractor shall be responsible for all remedy for lack of strict conformance associated with this criteria.

H. The Design Professional shall not be required to review partial submissions or those for which submissions of correlated items have not been received.

I. If more than two submittals (either for product data, shop drawings, record drawings, or test and balance reports) are made by the Contractor, the Owner reserves the right to charge the Contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the Contractor.

J. The contractor shall cloud all changes made on submittals that are marked “Revise and Resubmit.”

K. Required Submittals: Provide submittals for each item of equipment specified or scheduled in the contract documents. See table at the end of this section.

1.14 SPECIFIC CATEGORY SUBMITTAL REQUIREMENTS:

A. Product Listing:

1. Unless otherwise specified, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.

2. When two or more items of same material or equipment are required (plumbing fixtures, pumps, valves, air conditioning units, etc.) they shall be of the same manufacturer. Product manufacturer uniformity does not apply to raw materials, bulk materials, pipe, tube, fittings (except flanged and grooved types), sheet metal, wire, steel bar stock, welding rods, solder, fasteners, motors for dissimilar equipment units and similar items used in work, except as otherwise indicated.

 a. Provide products which are compatible within systems and other connected items.

B. Schedule of Values

1. Provide preliminary schedule of values with product data submittal, within three (3) weeks from award of contract to successful bidder. Provide according to the following descriptions:

 a. Plumbing
 b. Fire Protection
c. HVAC

1) Equipment
2) Sheet Metal
3) Piping
4) Insulation
5) Test and Balancing
6) Temperature Controls

d. Demolition
e. Miscellaneous

2. Provide a final Schedule of Values at close-out of project including updated values based on actual installation.

C. Product Data:

1. Where pre-printed data covers more than one distinct product, size, type, material, trim, accessory group or other variation, mark submitted copy with black pen to indicate which of the variations is to be provided.
2. Delete or mark-out portions of pre-printed data which are not applicable.
3. Where operating ranges are shown, mark data to show portion of range required for project application.
4. For each product, include the following:

 a. Sizes.
 b. Weights.
 c. Speeds.
 d. Capacities.
 e. Piping and electrical connection sizes and locations.
 f. Statements of compliance with the required standards and regulations.
 g. Performance data.
 h. Manufacturer’s specifications.

D. Test Reports:

1. Submit test reports which have been signed and dated by the accredited firm or testing agency performing the test.
2. Prepare test reports in the manner specified in the standard or regulation governing the test procedure (if any) as indicated.
3. Submit test reports as required for O & M manuals.

E. Operation and Maintenance Data: See separate paragraph of this specification section.

F. Record Drawings: See separate paragraph of this specification section.

1.15 DELIVERY, STORAGE, AND HANDLING:

A. Refer to Division 1 Sections on Transportation and Handling and Storage and Protection.

B. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels and similar information needed for distinct identifications;
adequately packaged and protected to prevent damage or contamination during shipment, storage, and handling.

C. Check delivered equipment against contract documents and submittals.

D. Store equipment and materials at the site, unless off-site storage is authorized in writing. Protect stored equipment and materials from damage, dirt, dust, freezing, heat and moisture.

E. Coordinate deliveries of mechanical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.

F. Provide factory-applied plastic end-caps on each length of pipe and tube, except for concrete, corrugated metal, hub-and-spigot, clay pipe. Maintain end-caps through shipping, storage and handling to prevent pipe-end damage and prevent entrance of dirt, debris and moisture.

G. Protect stored ductwork, pipes and tubes. Elevate above grade and enclose with durable, waterproof wrapping. When stored inside, do not exceed structural capacity of the floor.

H. Protect flanges, fittings and specialties from moisture and dirt by inside storage and enclosure, or be packaging with durable, waterproof wrapping.

I. Protect sheet metal ductwork and fittings. Elevate and store above grade and cover ends with waterproof wrapping.

1.16 DEMOLITION:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.

B. During the demolition phase of this contract it is the responsibility of this Contractor to carefully remove existing equipment, piping or ductwork and related items either as shown on the demolition drawings as being removed, or as required for the work.

C. The location of existing equipment, pipes, ductwork, etc., shown on the drawings has been taken from existing drawings and is, therefore, only as accurate as that information. All existing conditions shall be verified from field measurements with necessary adjustment being made to the drawing information.

D. Hazardous Material: If suspected hazardous material, in any form, is discovered by this Contractor in the process of his work, he shall report such occurrence to the Owner immediately. The Owner will determine the action to be taken for the hazardous material removal, which is not a part of the work to be done under this Division.

1.17 CUTTING AND PATCHING:

A. This Article specifies the cutting and patching of mechanical equipment, components and materials to include removal and legal disposal of selected materials, components and equipment. Coordinate the cutting and patching of building components to accommodate the installation of mechanical equipment and materials.
B. Refer to Division 1.

C. Do not endanger or damage installed work through procedures and processes of cutting and patching.

D. Arrange for repairs required to restore other work, because of damage caused as a result of mechanical installations.

E. No additional compensation will be authorized for cutting and patching work that is necessitated by ill-timed, defective or non-conforming installations.

F. Perform cutting, fitting and patching of mechanical equipment and materials required to:
 1. Uncover work to provide for installation of ill-timed work;
 2. Remove and replace defective work;
 3. Remove and replace work not conforming to requirements of the Contract Documents;
 4. Remove samples of installed work as specified for testing;
 5. Install equipment and materials in existing structures;
 6. Upon written instructions from the Architect/Engineer, uncover and restore work to provide for Architect/Engineer observation of concealed work.

G. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including, but not limited to removal of mechanical piping, heating units, plumbing fixtures and trim and other mechanical items made obsolete by the new work.

H. Protect the structure, furnishings, finishes and adjacent materials not indicated or scheduled to be removed.

I. Provide and maintain an approved type of temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas. Temporary partitions must not impede access to building egress.

J. Locate identify, and protect mechanical and electrical services passing through remodeling or demolition area and serving other areas required to be maintained operational. When services must be interrupted, provide temporary services for the affected areas and notify the Owner prior to changeover. Cover openings in ductwork to remain. Protect equipment and systems to remain.

1.18 ROUGH-IN:

 A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

 B. Refer to equipment shop drawings and manufacturer's requirements for actual provided equipment for rough-in requirements.

 C. Work through all coordination before rough-in begins.

1.19 ACCESSIBILITY:

 A. Install equipment and materials to provide required access for servicing and maintenance. Coordinate the final location of concealed equipment and devices
requiring access with final location of required access panels and doors. Allow ample space for removal of all parts that require replacement or servicing.

B. Furnish hinged steel access doors with concealed latch, whether shown on drawings or not, in all walls and ceilings for access to all concealed valves, shock absorbers, air vents, motors, fans, balancing cocks, and other operating devices requiring adjustment or servicing. Refer to Division 1 for access door specification and Division 23 for duct access door requirements.

C. The minimum size of any access door shall not be less than the size of the equipment to be removed or 12 inches x 12 inches if used for service only.

D. Furnish doors to trades performing work in which they are to be built, in ample time for building-in as the work progresses. Whenever possible, group valves, cocks, etc., to permit use of minimum number of access doors within a given room or space.

E. Factory manufactured doors shall be of a type compatible with the finish in which they are to be installed. In lieu of these doors, approved shop fabricated access doors with DuroDyne hinges may be used.

F. Final installed conditions shall accommodate accessibility and replacement of system components that regularly require service and replacement. This includes control devices, sensors, motors, etc. Such devices shall not be permanently obstructed by building systems such as piping, ductwork, insulation, drywall, etc.

1.20 BELTS, SHEAVES, IMPELLERS:

A. The Mechanical Contractor shall coordinate with the Test and Balance Contractor and supply correctly-sized drive belts, sheaves, and trimmed impellers.

1.21 EXCAVATING AND BACKFILLING:

A. General:

1. Provide all necessary excavation and backfill for installation of mechanical work in accordance with Division 2.
2. In general, follow all regulations of OSHA as specified in Part 1926, Subpart P, "Excavations, Trenching and Shoring." Follow specifications of Division 23 as they refer specifically to the mechanical work.

B. Pipe Trenching:

1. Provide all necessary pumping, cribbing and shoring.
2. Walls of all trenches shall be a minimum of 6 inches clearance from the side of the nearest mechanical work. Install pipes with a minimum of 6 inches clearance between them when located in same trench.
3. Dig trenches to depth, width, configuration, and grade appropriate to the piping being installed. Dig trenches to 6 inches below the level of the bottom of the pipe to be installed. Install 6 inches bed of pea gravel or squeegee, mechanically tamp to provide a firm bed for piping, true to line and grade without irregularity. Provide depressions only at hubs, couplings, flanges, or other normal pipe protrusions.
C. Backfilling shall not be started until all work has been inspected, tested and accepted. All backfill material shall be reviewed by the soils engineer. In no case shall lumber, metal or other debris be buried in with backfill.

D. Trench Backfill:

1. Backfill to 12 inches above top of piping with pea gravel or squeegee, the same as used for piping bed, compact properly.
2. Continue backfill to finish grade, using friable material free of rock and other debris. Install in 6 inch layers, each properly moistened and mechanically compacted prior to installation of ensuing layer. Compaction by hydraulic jetting is not permissible.

E. After backfilling and compacting, any settling shall be refilled, tamped, and refinished at this contractor’s expense.

F. This contractor shall repair and pay for any damage to finished surfaces.

G. Use suitable excavated material to complete the backfill, installed in 6 inch lifts and mechanically compacted to seal against water infiltration. Compact to 95 percent for the upper, 30 inches below paving and slabs and 90 percent elsewhere.

1.22 NAMEPLATE DATA:

A. Provide permanent operational data nameplate, refer to the section on Mechanical Identification, on each item of mechanical equipment, indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data. Locate nameplates in an accessible location. Coordinate with Owner for specific requirements.

1.23 LUBRICATION OF EQUIPMENT:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.

B. Contractor shall properly lubricate all mechanical pieces of equipment which he provided before turning the building over to the Owner. He shall attach a linen tag or heavy duty shipping tag on the piece of equipment showing the date of lubrication and the type and brand of lubricant used.

C. Furnish the Engineer with a typewritten list included in the O&M manuals of each item lubricated and type of lubricant used, no later than two (2) weeks before completion of the project, or at time of acceptance by the Owner of a portion of the building and the mechanical systems involved.

1.24 CLEANING:

A. Refer to Division 1.

B. Refer to Division 23, "TESTING, ADJUSTING AND BALANCING" for requirements for cleaning filters, strainers, and mechanical systems prior to final acceptance.
1.25 RECORD DOCUMENTS:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.

B. Keep a complete set of record document prints in custody during entire period of construction at the construction site. Documents shall be updated on a weekly basis.

C. Mark Drawing Prints to indicate revisions to piping and ductwork, size and location; including locations of dampers and other control devices; actual equipment locations, dimensioned from column lines; actual inverts and locations of underground piping; concealed equipment, dimensioned to column lines; mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.); Change Orders; concealed control system devices. Changes to be noted on the drawings shall include final location of any piping or ductwork relocated more than 1'-0" from where shown on the drawings.

D. Mark shop drawings to indicate approved substitutions; Change Orders; actual equipment and materials used.

E. Mark equipment and fixture schedules on drawings to indicate manufacturer and model numbers of installed equipment and fixtures.

F. Revisions to the Contract Documents shall be legible and shall be prepared using the following color scheme:
 1. Red shall indicate new items, deviations and routing.
 2. Green shall indicate items removed or deleted.
 3. Blue shall be used for relevant notes and descriptions.

G. At the completion of the project, obtain from the Architect a complete set of the Mechanical Contract Documents in a read-only electronic format (.pdf unless otherwise noted). This set will include all revisions officially documented through the Architect/Engineer. Using the above color scheme, transfer any undocumented revisions from the construction site record drawings to this complete set. Submit completed documents to the Architect/Engineer. This contract will not be considered completed until these record documents have been received and reviewed by the Architect/Engineer.

H. Contractor may propose methods of maintaining record documents on electronic media. Obtain approval of Engineer and Owner prior to proceeding. Marked-up .pdf format readable by Bluebeam is preferred.

1.26 OPERATION AND MAINTENANCE DATA:

A. Refer to Division 1.

B. Coordinate with Division 1 requirements to provide Operating and Maintenance Manuals prior to project completion.

C. The testing and balancing report shall be submitted and received by the Engineer at least fifteen calendar days prior to the contractor's request for final observation time.
frame requirements. Include in the O & M Manual after review with "No Exceptions Taken" has been accomplished.

D. In addition to the information required by Division 1 for Maintenance Data, include the following information:

1. The job name and address and contractor's name and address shall be identified at the front of the electronic submittal.
2. Description of mechanical equipment, function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.
3. Manufacturer's printed operating procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, shut-down, and emergency instructions; and summer and winter operating instructions. Provide any test reports and start-up documents.
4. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
5. Servicing instructions, lubrication charts and schedules, including Contractor lubrication reports.
6. Manufacturer's service manuals for all mechanical equipment provided under this contract.
7. Include the valve tag list.
8. Name, Address and Telephone numbers of the Sub-contractors and local company and party to be contacted for 24-hour service and maintenance for each item of equipment.
9. Starting, stopping, lubrication, equipment identification numbers and adjustment clearly indicated for each piece of equipment.
10. Complete recommended spare parts list.
11. Mechanical System and Equipment Warranties.
12. Copies of all test reports shall be included in the manuals.
13. Provide manuals with dividers for major sections and special equipment. Mark the individual equipment when more than one model or make is listed on a page. Provide detailed table of contents.
14. Final schedule of values with all mechanical change order costs included and identified.
15. Contractor may propose methods of maintaining record documents on electronic media. Obtain approval of Engineer and Owner prior to proceeding. Marked-up PDF format readable by Bluebeam is preferred.

E. This contract will not be considered completed nor will final payment be made until all specified material, including test reports, and final Schedule of Values with all Electrical and Information Technology change order costs included and identified is provided and the manual is reviewed by the Architect/Engineer.

1.27 PROJECT CLOSEOUT LIST:

A. In addition to the requirements specified in Division 1, complete the requirements listed below.

B. The Contractor shall be responsible for the following Mechanical Submittal Checklist either by performing and/or coordinating such items prior to applying for certification of substantial completion. Refer to individual specification sections for additional requirements. (Checklist is located at the end of this section.)
1.28 WARRANTIES:

A. Refer to the Division 1 for procedures and submittal requirements for warranties. Refer to individual equipment specifications for warranty requirements. In any case the entire mechanical system shall be warranted no less than one year from the time of acceptance by the Owner.

B. Compile and assemble the warranties specified in Division 21, 22, and 23, include the Operating and Maintenance Manuals.

C. Provide complete warranty information for each item to include product or equipment to include date or beginning of warranty or bond; duration of warranty or bond; and names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services.

1.29 CONSTRUCTION REQUIREMENTS:

A. The contractor shall maintain and have available at the jobsite current information on the following at all times:

1. Up to date record drawings.
2. Submittals
3. Site observation reports with current status of all action items.
4. Test results; including recorded values, procedures, and other findings.
5. Outage information.

1.30 MECHANICAL SUBMITTAL CHECKLIST:

<table>
<thead>
<tr>
<th>Spec Section</th>
<th>Item</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Submittals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shop</td>
</tr>
<tr>
<td>210500</td>
<td>Common Work Results For Fire</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Suppression</td>
<td></td>
</tr>
<tr>
<td>211000</td>
<td>Water Based Fire Protection</td>
<td>X</td>
</tr>
<tr>
<td>220500</td>
<td>Common Work Results For Plumbing</td>
<td>X</td>
</tr>
<tr>
<td>221110</td>
<td>Facility Water Distribution Piping</td>
<td>X</td>
</tr>
<tr>
<td>221319</td>
<td>Drainage & Vent Systems</td>
<td>X</td>
</tr>
<tr>
<td>224000</td>
<td>Plumbing Fixtures</td>
<td>X</td>
</tr>
<tr>
<td>230500</td>
<td>Preliminary Schedule Of Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Schedule Of Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Warranties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O&M Manuals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record Drawings</td>
<td>X</td>
</tr>
<tr>
<td>Spec Section</td>
<td>Item</td>
<td>Submittals</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>230507</td>
<td>Motors, Drives, Motor Controllers And Electrical Requirements For Mechanical Equipment</td>
<td>X</td>
</tr>
<tr>
<td>230510</td>
<td>Basic Piping Materials And Methods</td>
<td>X</td>
</tr>
<tr>
<td>230518</td>
<td>Piping Specialties</td>
<td>X</td>
</tr>
<tr>
<td>230519</td>
<td>Meters And Gauges</td>
<td>X</td>
</tr>
<tr>
<td>230523</td>
<td>Valves</td>
<td>X</td>
</tr>
<tr>
<td>230529</td>
<td>Supports And Anchors</td>
<td>X</td>
</tr>
<tr>
<td>230553</td>
<td>Mechanical Identification</td>
<td>X</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting And Balancing</td>
<td></td>
</tr>
<tr>
<td>230700</td>
<td>Mechanical Insulation</td>
<td>X</td>
</tr>
<tr>
<td>230900</td>
<td>Direct Digital Control Systems</td>
<td>X</td>
</tr>
<tr>
<td>230993</td>
<td>Sequence Of Operation</td>
<td></td>
</tr>
<tr>
<td>232123</td>
<td>Hvac Pumps</td>
<td>X</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ductwork</td>
<td>X</td>
</tr>
<tr>
<td>233713</td>
<td>Air Outlets & Inlets</td>
<td>X</td>
</tr>
</tbody>
</table>

1 For Starters and Variable Frequency Drives
2 Requires Review & Approval of calibrated balance valves from T & B Contractor
3 See Specific Specification Section for Test & Certification Requirements

END OF SECTION 230500
SECTION 230510 - BASIC PIPING MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUBMITTALS:

A. Refer to Division 1 and Section 23 05 00 “Common Work Results for Mechanical” for administrative and procedural requirements for submittals.

B. Product Data: Submit industry standards and manufacturer’s technical product data, installation instructions, and dimensioned drawings for each type of pipe and pipe fitting. Submit piping schedule showing pipe or tube weight, fitting type, and joint type for each piping system.

C. Welding Certifications: Submit reports as required for piping work.

D. Brazing Certifications: Submit reports as required for piping work.

1.2 QUALITY ASSURANCE:

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacturer of pipes and pipe fittings of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Welder’s Qualifications: All welders shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX, Welding and Brazing Qualifications.

C. Welding procedures and testing shall comply with the latest revisions of the applicable sections for B31, of the ANSI/ASME standard codes for pressure piping, noted as follows: B31.1 - Pressure Piping Code / B31.2 - Fuel Gas Piping Code / B31.5 - Refrigeration Piping / B31.9 - Building Service Piping Code.

D. Before any welding is performed, the contractor shall submit to the Architect/Engineer, or his authorized, a copy of the Manufacturer's Record of Welder or Welding Operator Qualification Tests and his Welding Procedure Specification together with the Procedure Qualification Record as required by ASME Boiler and Pressure Vessel Code.

E. Each manufacturer or contractor shall be responsible for the quality of welding done by his organization and shall repair or replace any work not in accordance with these specifications.

F. Soldering and Brazing procedures shall conform to ANSI Standard Safety Code for Mechanical Refrigeration.

PART 2 - PRODUCTS

2.1 GENERAL:

A. Piping Materials: Provide pipe and tube of type, pressure and temperature ratings, capacities, joint type, grade, size and weight (wall thickness or Class) indicated for each service. Where type, grade or class is not indicated, provide proper selection as determined by Installer for installation requirements, and comply with governing regulations and industry standards.
B. Pipe/Tube Fittings: Provide factory-fabricated fittings of type, materials, grade, class and pressure rating indicated for each service and pipe size. Provide sizes and types matching pipe, tube, valve or equipment connection in each case. Where not otherwise indicated, comply with governing regulations and industry standards for selections, and with pipe manufacturer’s recommendations where applicable.

2.2 STEEL PIPES AND PIPE FITTINGS:

A. Black Steel Pipe: ASTM A 53, Grade B, type E, electric resistance welded.

B. Galvanized Steel Pipe: ASTM A 53, Grade B.

C. Seamless Steel Pipe: ASTM A 53, Grade B, type S or A106 high temperature.

D. Stainless Steel Sanitary Tubing: ASTM A 270; Finish No. 80, (dairy and food industry, 1 inch thru 4 inches).

E. Cast-Iron Flanged Fittings: ANSI/ASME B16.1, including bolting (Class 125 and 250).

G. Malleable-Iron Threaded Fittings: ANSI/ASME B16.3; plain or galvanized as indicated (Class 125 and 300).

H. Malleable-Iron Threaded Unions: ANSI B16.39, Class 150, 250 or 300; selected by Installer for proper piping fabrication and service requirements, including style, end connections, and metal- to-metal seats (iron, bronze or brass); plain or galvanized as indicated (Class 150, 250 and 300).

J. Steel Flanges/Fittings: ANSI/ASME B16.5, ASTM A234 (Fire Protection) including bolting and gasketing of the following material group, end connection and facing, except as otherwise indicated.

 Material Group: Group 1.1.
 End Connections: Buttwelding.
 Facings: Raised-face.

K. Steel Pipe Flanges for Waterworks Service: AWWA C207 (water service piping only).

L. Corrosion-Resistant Cast Flanges/Fittings: MSS SP-51, including bolting and gasketing (threaded where pressure is not critical).

M. Forged-Steel Socket-Welding and Threaded Fittings: ANSI B16.11, except MSS SP-79 for threaded reducer inserts; rated to match schedule of connected pipe (up to 4 inch pipe size).

N. Wrought-Steel Buttwelding Fittings: ANSI B16.9, except ANSI B16.28 for short-radius elbows and returns; rated to match connected pipe.

O. Stainless-Steel Buttwelding Fittings: MSS SP-43.

Q. Forged Branch-Connection Fittings: Except as otherwise indicated, provide type as determined by Installer to comply with installation requirements.

R. Pipe Nipples: Fabricated from same pipe as used for connected pipe; except do not use less than Schedule 80 pipe where length remaining unthreaded is less than 1-1/2 inches, and where pipe size is less than 1-1/2 inches, and do not thread nipples full length (no close-nipples).

2.3 COPPER TUBE AND FITTINGS:

A. Copper Tube: ASTM B 88; Type K or L as indicated for each service; hard-drawn temper, except as otherwise indicated.

B. DWV Copper Tube: ASTM B 306.

C. ACR Copper Tube: ASTM B 280.

D. Cast-Copper Solder-Joint Fittings: ANSI B16.18.

E. Wrought-Copper Solder-Joint Fittings: ANSI B16.22.

F. Cast-Copper Solder-Joint Drainage Fittings: ANSI B16.23 (drainage and vent with DWV or tube).

G. Wrought-Copper Solder-Joint Drainage Fittings: ANSI B16.29.

I. Bronze Pipe Flanges/Fittings: ANSI B16.24 (Class 150 and 300).

J. Copper-Tube Unions: Provide standard products recommended by manufacturer for use in service indicated.

2.4 CAST-IRON PRESSURE PIPES AND PIPE FITTINGS:

A. Ductile-Iron Pipe: Class 52, ANSI A21.51; AWWA C151; 350 psi pressure rating.

2.5 CAST-IRON SOIL PIPES AND PIPE FITTINGS:

A. Hubless Cast-Iron Soil Pipe: FS WW-P-401 and CISPI Standards 301 and 310. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.
B. Cast-Iron Hub-and-Spigot Soil Pipe: ASTM A 74. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.

D. Heavy Duty Hubless Cast Iron Soil Pipe Couplings: Neoprene gasket coupling with ASTM C564. 304 stainless steel shield, minimum 0.15 inches thick, minimum 3 inches wide with 4 sealing bands up to 4 inch pipe, minimum 4 inches wide with 6 sealing bands up to 10 inch pipe.

 1. Basis of Design: Husky SD 4000.

F. Neoprene Compression Gaskets: ASTM C 564.

2.6 MISCELLANEOUS PIPING MATERIALS/PRODUCTS:

A. Welding Materials: Except as otherwise indicated, provide welding materials as determined by Installer to comply with installation requirements.

B. Soldering Materials: All soldering materials shall be lead free.

 1. 95-5 Tin-Antimony: ASTM B 32, Grade 95TA. Melting Range 450-470 degrees F.
 3. Flux: All flux shall be lead free, water soluble, and compatible with the solder and the materials being joined. ASTM B813-93.

C. Brazing Materials: Except as otherwise indicated, provide brazing materials to comply with installation requirements.

 1. Comply with AWSA 5.8, Section II, ASME Boiler and Pressure Vessel Code for brazing filler metal materials.

 a. Copper phosphorus -Bcup-5, 15 percent solver content, melting range 1190 to 1480 degrees F.
 b. Silver - BAg-36, 45 percent silver, cadmium-free. Melting range 1195 to 1265 degrees F.

D. Gaskets for Flanged Joints: ANSI B16.21; full-faced for cast-iron flanges; raised-face for steel flanges, unless otherwise indicated.

E. Piping Connectors for Dissimilar Non-Pressure Pipe: Elastomeric annular ring insert, or elastomeric flexible coupling secured at each end with stainless steel clamps, sized for exact fit to pipe ends and subject to approval by plumbing code.
1. Manufacturer: Subject to compliance with requirements, provide piping connectors of the following:
 a. Husky Technologies (Husky SD 4000):

F. Pipe Thread Sealant Material: Except as otherwise indicated, provide all pipe threads with the sealant material as recommended by the manufacturer for the service.

1. Manufacturer: Subject to compliance with requirements, provide piping thread sealant material of the following:
 a. The Rectorseal Corporation

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Verify all dimensions by field measurements. Verify that all water distribution piping may be installed in accordance with pertinent codes and regulations, and original design, and the referenced standards.

B. Examine rough-in requirements for plumbing fixtures and other equipment having water connections to verify actual locations of piping connections prior to installation.

C. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PIPING INSTALLATION:

A. General: Install pipes and pipe fittings in accordance with recognized industry practices which will achieve permanently-leakproof piping systems, capable of performing each indicated service without piping failure. Install each run with minimum joints and couplings, but with adequate and accessible unions for disassembly and maintenance/replacement of valves and equipment. Reduce sizes (where indicated) by use of reducing fittings. Align piping accurately at connections, within 1/16 inch misalignment tolerance.

1. Comply with ANSI B31 Code for Pressure Piping.

2. Electrical Equipment Spaces: Do not run piping through transformer vaults and other electrical or electronic equipment spaces and enclosures. Only piping serving this type of equipment space shall be allowed.

3. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. Locations and arrangements of piping take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated.

4. Use fittings for all changes in direction and all branch connections.

5. Install piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.

6. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

7. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1 inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.
8. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

9. Install drains in pressure pipe systems at all low points in mains, risers, and branch lines consisting of a tee fitting, ¾ inch ball valve, and short ¾ inch threaded end nipple and cap with chain.

10. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.

11. Fire and Smoke Wall Penetrations: Where pipes pass through fire and smoke rated walls, partitions, ceilings, and floors, maintain the fire and smoke rated integrity. Refer to Division 23, Sections 23 05 18 and 23 05 09 for materials.

12. Anchor piping to ensure proper direction of expansion and contraction.

13. Coordinate foundation and all other structural penetrations with structural engineer.

B. Hydronic Piping:

1. Make reductions in hydronic pipe sizes using eccentric reducer fitting installed with the level side up.

2. Install hydronic piping branch connections to mains using Tee fittings in main with take-off out the bottom of the main, except for up-feed risers which shall have take-off out the top of the main line. Install all hydronic piping level with manual air vent at all high points in direction of flow.

3. Install hydronic piping level except for gravity flow systems such as condenser water and condensate drain piping.

C. Sanitary Waste and Vent:

1. Install plumbing drainage piping with ¼ inch per foot (2 percent) downward slope in direction of drain for piping 3 inches and smaller, and 1/8 inch per foot (1 percent) for piping 4 inch and larger unless noted otherwise. Install cast iron pipe in accordance with the Cast Iron Soil Pipe Institute Handbook.

2. Install 1 inch thick extruded polystyrene over underground drainage piping that is above frost line and not under building. Provide width to extend minimum of 12 inches beyond each side of pipe. Install directly over pipe, centered on pipe center line.

3. Make changes in direction for drainage and vent piping using appropriate 45 degree wyes, half-wyes, or long sweep quarter, sixth, eighth, or sixteenth bends. SANITARY CROSSES OR SHORT QUARTER BENDS SHALL NOT BE USED IN DRAIN PIPING.

4. Provide thrust restraints (bracing to structure or rodded joints) at branches and changes in direction for cast iron pipe 5 inches and larger suspended within the building.

5. Where cast iron piping is suspended in excess of 18 inches on single rod hangers, sway bracing shall be provided to prevent shear at the joints.

6. Install underground drain piping to conform with the plumbing code, and in accordance with the Cast Iron Soil Pipe Institute Engineering Manual.

7. Lay piping beginning at low point of system, true to grades and alignment indicated, with unbroken continuity of invert.

8. Place bell ends or groove ends of piping facing upstream.

9. Install gaskets in accordance with manufacturer's recommendations for use of lubricants, cements, and other special installation requirements.

10. Install sub-surface drain piping according to requirements of the soils engineers requirements when required and connect to storm sewer / sump pump.
11. Grade trench bottoms to provide a smooth, firm, and stable foundation, free from rock, throughout the length of the pipe.

12. Remove unstable, soft, and unsuitable materials at the surface upon which pipes shall be laid, and backfill with clean sand or pea gravel to indicated invert elevation.

13. Shape bottom of trench to fit the bottom 1/4 of the circumference of pipe. Fill unevenness with tamped sand. At each pipe joint dig bell holes to relieve the bell of the pipe of all loads, and to ensure continuous bearing of the pipe barrel on the foundation.

D. Plastic Pipe:

1. All plastic piping installed below grade shall meet ASTM D2321-89 requirements.

3.3 PIPING SYSTEM JOINTS:

A. General: Provide joints of type indicated in each piping system.

B. Thread pipe in accordance with ANSI B2.1; cut threads full and clean using sharp dies. Ream threaded ends to remove burrs and restore full inside diameter. Apply pipe joint compound, or pipe joint tape (Teflon) where recommended by pipe/fitting manufacturer, on male threads at each joint and tighten joint to leave not more than 3 threads exposed.

C. Braze copper tube-and-fitting joints in accordance with ASME B31.

D. Solder copper tube-and-fitting joints with silver solder or 95-5 tin-antimony. Cut tube ends squarely, ream to full inside diameter, and clean outside of tube ends and inside of fittings. Apply solder flux to joint areas of both tubes and fittings. Insert tube full depth into fitting, and solder in manner which will draw solder full depth and circumference of joint. Wipe excess solder from joint before it hardens.

E. Weld pipe joints in accordance with ASME Code for Pressure Piping, B31. Provide weld-o-let fittings for two pipe sizes less than main pipe size.

F. Weld pipe joints in accordance with recognized industry practice and as follows:

1. Weld pipe joints only when ambient temperature is above 0 degrees F (-18 degrees C) where possible.
2. Bevel pipe ends at a 37.5 degrees angle where possible, smooth rough cuts, and clean to remove slag, metal particles and dirt.
3. Use pipe clamps or tack-weld joints with 1 inch long welds; 4 welds for pipe sizes to 10 inches, 8 welds for pipe sizes 12 inch to 20 inch.
4. Build up welds with stringer-bead pass, followed by hot pass, followed by cover or filler pass. Eliminate valleys at center and edges of each weld. Weld by procedures which will ensure elimination of unsound or unfused metal, cracks, oxidation, blow-holes and non-metallic inclusions.
5. Do not weld-out piping system imperfections by tack-welding procedures; refabricate to comply with requirements.

G. Weld pipe joints of steel water pipe in accordance with AWWA C206.
H. Flanged Joints: Match flanges within piping system, and at connections with valves and equipment. Clean flange faces and install gaskets. Tighten bolts to provide uniform compression of gaskets.

I. Hubless Cast-Iron Joints: Comply with coupling manufacturer’s installation instructions. Use pre-set torque wrench set to 80 in-lbs on heavy duty couplings.

3.4 PIPING APPLICATION:

A. Domestic Hot and Cold Water - Inside Building:
 1. Above Grade Inside Building:
 a. 6 inches and Smaller: Type L or K, hard drawn copper tube with wrought copper or bronze fittings, 95-5 tin-antimony or silver tin alloy soldered joints.

B. Sanitary Drainage and Vents - Inside Building:
 1. Above Grade: Service weight cast iron, no-hub type with neoprene gaskets; service weight cast iron, hub and spigot type with neoprene gaskets; or DWV copper with wrought copper of cast brass fittings.
 2. Below Grade: Sizes 2 inch to 20 inch, service weight cast iron, hub and spigot type only with neoprene compression gaskets; or sizes 12 inches and larger ductile cast iron with neoprene gasket joints.

C. Heating Water, Chilled Water and Condenser Water Piping:
 1. 2 Inches and Smaller:
 a. Schedule 40, black steel with 125 lb. cast iron or 150 lb. malleable iron threaded fittings or Type L or K copper, hard drawn copper wrought copper or bronze fittings, silver – tin alloy soldered joints.
 2. 2-1/2 Inches and Larger:
 a. Schedule 40, seamless or ERW (std. weight 12 inches and over) black steel with flanged or welded joints.
 c. Flanges: 150 lb. 300 lb. forged steel slip-on or welding neck type.
 d. Bolting: Regular square head machine bolts with heavy hexagonal nuts.
 e. Gaskets: Thickness, material and type suitable for fluid to be handled, and design temperature and pressures.

D. Equipment Drains and Overflows:
 1. Type "M" or "DWV" copper.

3.5 EXPOSED PIPING IN FINISHED AREAS:

A. Plumbing piping and fittings which are exposed (and uninsulated) in finished areas generally occupied by people including, but not limited to, kitchens, animal cagewash/equipment washing rooms, hospital autoclave or sterilizing rooms shall be installed with a smooth, high polish, durable chrome plated finish.
3.6 PIPING TESTS:

A. General: Provide temporary equipment for testing, including pump and gauges. Test piping system before insulation is installed wherever feasible, and remove control devices before testing. Test each section of each piping system independently but do not use piping system valves to isolate sections where test pressure exceeds valve pressure rating. Fill each section with water and pressurize for indicated pressure and time.

B. Test all piping systems as specified. Correct leaks by remaking joints. Remove equipment not able to withstand test procedure during test.

C. Work to be installed shall remain uncovered until the required tests have been completed.

D. Piping which is to be concealed shall be tested before being permanently enclosed.

E. As soon as work has been completed, conduct preliminary tests to ascertain compliance with specified requirements. Make repairs or replacements as required.

F. Give a minimum of twenty-four hours notice to Engineer of dates when acceptance test will be conducted. Conduct tests as specified for each system in presence of representative of owner, agency having jurisdiction or his representative. Submit three (3) copies of successful tests to the Engineer for his review. Report shall state system tested and date of successful test.

G. Contractor shall obtain certificates of approval, acceptance and compliance with regulations of agencies having jurisdiction. Work shall not be considered complete until such certificates have been delivered by the Engineer to the Owner.

H. All costs involved in these tests shall be borne by Contractor.

I. System Tests

1. Hydrostatic Test: The test shall be accomplished by hand pumping the system to the specified water pressure, and maintaining that pressure until the entire system has been inspected for leaks, but in no case for a time period of less than four hours.
 a. Domestic water systems: 100 psig or 150 percent of system pressure, whichever is greater.
 b. Heating water: 100 psig or 150 percent of operating pressure, whichever is greater.

2. Waste, Drain and Vent Piping: All waste and vent piping, including building drain, roof drain and building sewer, shall be subjected to a water test. All openings in the piping system shall be tightly closed, except the highest opening, and the system filled with water to the point of overflow. The water shall be kept in the system, or in the portion under test, for at least 15 minutes before inspection starts; the system shall then be tight to all points. No section shall be tested with less than a ten foot head of water. Roof drain shall be closed at the lowest point and filled with water to the point of overflow.

3. Repair piping systems sections which fail required piping test, by disassembly and re-installation, using new materials to extent required to overcome leakage.
Do not use chemicals, stop-leak compounds, mastics, or other temporary repair methods.

4. Drain test water from piping systems after testing and repair work has been completed.

3.7 UNDERGROUND PIPE INSTALLATION:

A. Clean fittings, nipples and other field joints thoroughly before coating.

B. Protect gray and ductile cast iron pipe installed below grade with polyethylene encasement applied in strict accordance with ANSI/AWWA C105/A21.5.

C. Install ductile iron pipe below grade as prescribed by AWWA C600.

D. Provide concrete thrust block and ¾ inch steel threaded tie bar at each direction change on underground pressure pipe. Imbed tie bar in thrust block and connect to upstream fitting. Paint tie bar with two coats of bitumastic #50 paint.

3.8 ADJUSTING AND CLEANING:

A. General: Clean exterior surfaces of installed piping systems of superfluous materials, and prepare for application of specified coatings (if any). Flush out piping systems with clean water before proceeding with required tests. Inspect each run of each system for completion of joints, supports and accessory items.

1. Inspect pressure piping in accordance with procedures of ASME B31.

B. Disinfect all potable water mains and water service piping in accordance with local and health department requirements. Submit test results report.

C. Clean and flush hydronic piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine mesh strainers in pump suction diffusers.

D. Chemical Treatment: Provide hydronic systems with a water analysis prepared by the chemical treatment supplier to determine the type and level of chemicals required for prevention of scale and corrosion. Perform initial treatment after completion of system testing.

END OF SECTION 230510
PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of piping specialties work required by this section is indicated on drawings and schedules and by requirements of this section.

B. Piping specialties furnished as part of factory-fabricated equipment, are specified as part of equipment assembly in other Division-23 sections.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of piping specialties of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. FCI Compliance: Test and rate "Y" type strainers in accordance with FCI 73-1 "Pressure Rating Standard for "Y" Type Strainers". Test and rate other type strainers in accordance with FCI 78-1 "Pressure Rating Standard for Pipeline Strainers Other than "Y" Type".

2. ASME B 31.9 "Building Services Piping" for materials, products, and installation.

3. Safety valves and pressure vessels shall bear the appropriate ASME label.

4. Fabricate and stamp air separators and compression tanks to comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

5. ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualification" for qualifications for welding processes and operators.

1.3 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data, including installation instructions, and dimensioned drawings for each type of manufactured piping specialty. Include pressure drop curve or chart for each type and size of pipeline strainer. Submit schedule showing manufacturer's figure number, size, location, and features for each required piping specialty.

B. Shop Drawings: Submit for fabricated specialties, indicating details of fabrication, materials, and method of support.

C. Maintenance Data: Submit maintenance data and spare parts lists for each type of manufactured piping specialty. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Combination Pressure and Temperature Relief Valves:
a. Amtrol, Inc.
b. Bell & Gossett
c. Spirax Sarco.
d. Watts Regulator Co.

2. Air Vents:
 a. Armstrong International
 b. Bell & Gossett
 c. Hoffman Specialty
 d. Spirax Sarco.
 e. Amtrol, Inc.

3. Air Separators:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett
 d. Taco, Inc.
 e. The John Wood Co.

4. Air Eliminator
 a. Spirotherm, Inc.

5. Air Eliminator and Dirt Separator
 a. Spirotherm, Inc.

6. Pump Suction Diffusers:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett
 d. Taco, Inc.
 e. Victaulic Company of America

7. Automatic Flow Control Valves:
 a. Griswold

8. Hydronic System Safety Relief Valves:
 a. Kunkle Valve Co., Inc.
 b. Lunkenheimer Co.
 c. Watts Regulator Co.
 d. Lonergan
 e. Keckley
 f. Bell & Gossett
 g. Conbraco

9. Pipe Escutcheons:
b. Producers Specialty & Mfg. Corp.

10. Low Pressure Strainers:
 a. Armstrong International
 b. Hoffman Specialty
 c. Metraflex Co.
 d. R-P&C Valve.
 e. Spirax Sarco.
 f. Victaulic Co. of America.
 g. Watts Regulator Co.
 h. Keckley

11. Dielectric Waterways
 a. Victaulic Co.
 b. Perfection Corp.
 c. Flow Design Inc.
 d. Precision Plumbing Products
 e. Rockford-Eclipse Div.

12. Mechanical Sleeve Seal:
 a. Thunderline Corp.
 b. Metra Flex.

2.2 HYDRONIC PIPING SPECIALTIES:

A. General: Provide factory-fabricated piping specialties recommended by manufacturer for use in service indicated. Provide piping specialties of types and pressure ratings indicated for each service, or if not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes as indicated, and connections, which properly mate with pipe, tube, and equipment connections. Where more than one type is indicated, selection is Installer's option.

B. Hydronic System Safety Relief Valves: Diaphragm operated, cast-iron or brass body valve, with low inlet pressure check valve, inlet strainer removable without system shutdown, and noncorrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory-set at operating pressure to suit system and have the capability for field adjustment. Safety relief valve shall be designed, manufactured, tested and labeled in accordance with the requirements of Section IV of the ASME Boiler and Pressure Vessel Code. Valve body shall be cast-iron, with all wetted internal working parts made of brass and rubber; 125 psig working pressure and 250 degrees F maximum operating temperature. Select valve to suit actual system pressure and BTU capacity. Set valve to relieve at 10 psi above operating pressure.

C. Coin Operated Manual Air Vent: Bronze body and nonferrous internal parts; 150 psig working pressure, 212 degrees F operating temperature; manually coin operated and having discharge outlet connection and 1/8 inch NPT male connection.

E. Automatic Air Vent: 100 psi working pressure, 240 degrees working temperature, stamped brass body and non-metallic float, with threaded outlet connector for "safe waste" discharge pipe.

1. Amtrol 703 or approved equivalent.

F. High Capacity Automatic Air Vent: 150 psig working pressure, 250 degrees working temperature, cast iron body, bronze pilot mechanism. Snap acting operation, preventing opening under negative pressure conditions. Capable of 18 scfm elimination at 30 psig.

1. Amtrol 720 or approved equivalent.

G. Air Separators: Welded black steel; ASME constructed and labeled for minimum 125 psig water working pressure and 350 degrees F operating temperature; perforated stainless steel air collector tube; tangential inlet and outlet connections; screwed connections up to and including 3 inch NPS; flanged connections for 4 inch NPS and above; threaded blowdown connection; sized as indicated for full system flow capacity.

H. Air Eliminator and Dirt Separator: Furnish and install as shown on the drawings combination coalescing type air eliminator and dirt separators. Pipe size is not a factor and all units shall be selected per the manufacturer’s recommendations. All combination units shall be fabricated steel, rated for 150 psig working pressure with entering velocities not to exceed 4 feet per second at specified GPM. Units specifically designed for high velocity systems may have an entering velocity of up to 10 feet per second. Units shall include an internal bundle filling the entire vessel to suppress turbulence and provide high efficiency. The bundle shall consist of a copper core tube with continuous wound copper medium permanently affixed to the internal element. Each eliminator shall have a separate venting chamber to prevent system contaminants from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism. Units shall include a valved side tap to flush floating dirt or liquids and for quick bleeding of large amounts of air during system fill or refill. Air separators shall be capable of removing 100% of the free air, 100% of the entrained air and up to 99.6% of the dissolved air in the system fluid. Dirt separation shall be at least 80% of all particles 30 micron and larger within 100 passes.

1. Spirovent by Spirotherm, Inc., or approved equal.

I. Pump Suction Diffusers: Cast-iron body, with threaded connections for 2 inch and smaller, flanged connections for 2-1/2 inch and larger; 175 psig working pressure, 300 degrees F maximum operating temperature; and complete with the following features:

1. Inlet vanes with length 1-1/2 times pump suction diameter or greater.
2. Cylinder strainer with 3/16 inch diameter openings with total free area equal to or greater than 5 times cross-sectional area of pump suction, designed to withstand pressure differential equal to pump shutoff head.
3. Disposable fine mesh strainer to fit over cylinder strainer.
4. Permanent magnet, located in flow stream, removable for cleaning.
5. Adjustable foot support, designed to carry weight of suction piping.

J. Automatic Flow Control Valves: Class 150, cast iron housing, stainless steel operating parts; threaded connections for 2 inch and smaller, flanged connections for 2-1/2 inch
and larger. Factory set to automatically control flow rates within plus or minus 5 percent design, while compensating for system operating pressure differential. Provide quick disconnect valves for flow measuring equipment. Provide a metal identification tag with chain for each valve, factory marked with the zone identification, valve model number, and rate flow in GPM.

2.3 PIPE ESCUTCHEONS:

A. General: Provide pipe escutcheons as specified herein with inside diameter closely fitting pipe outside diameter, or outside of pipe insulation where pipe is insulated. Select outside diameter of escutcheon to completely cover pipe penetration hole in floors, walls, or ceilings; and pipe sleeve extension, if any. Furnish pipe escutcheons with nickel or chrome finish for occupied areas, prime paint finish for unoccupied areas.

B. Pipe Escutcheons for Moist Areas: For waterproof floors, and areas where water and condensation can be expected to accumulate, provide cast brass or sheet brass escutcheons, solid or split hinged.

C. Pipe Escutcheons for Dry Areas: Provide sheet steel escutcheons, solid or split hinged.

2.4 LOW PRESSURE PIPELINE STRAINERS:

A. General: Provide strainers full line size of connecting piping, with ends matching piping system materials. Select strainers for 125 psi working pressure, with Type 304 stainless steel screen. Two inches and smaller steam and liquid strainers shall have 20 mesh screens. Provide 3/64 inch perforations for 2-1/2 inch and 3 inch steam and liquid strainers. Provide 1/8 inch mesh perforations for 4 inches and larger liquid strainers. Provide 1/16 inch mesh perforations for 4 inches and larger steam strainers.

B. Threaded Ends, 2 inch and Smaller: Bronze or Cast-iron body, screwed screen retainer with centered blowdown fitted with pipe plug.

C. Threaded Ends, 2-1/2 inches and Larger: Cast-iron body, bolted screen retainer with off-center blowdown fitted with pipe plug.

D. Flanged Ends, 2-1/2 inches and Larger: Cast-iron body, bolted screen retainer with off-center blowdown fitted with pipe plug.

E. Butt Welded Ends, 2-1/2 inches and Larger: Schedule 40 cast carbon steel body, bolted screen retainer with off-center blowdown fitted with pipe plug.

F. Grooved Ends, 2-1/2 inches and Larger: Tee pattern, ductile-iron or malleable-iron body and access end cap, access coupling with EDPM gasket.

2.5 DIELECTRIC WATERWAY:

A. General: Zinc electroplated nipple with non-metallic lining for use in service indicated, which effectively isolate ferrous from non-ferrous piping (electrical conductance), prevent galvanic action, and stop corrosion. Union style not acceptable.

2.6 MECHANICAL SLEEVE SEALS:

A. General: Modular mechanical type, consisting of interlocking synthetic rubber links shaped to continuously fill annular space between pipe and sleeve, connected with
bolts and pressure plates which cause rubber sealing elements to expand when tightened, providing watertight seal and electrical insulation, as manufactured by Link-Seal or equal.

B. Sleeve Seals: Provide sleeve seals for sleeves located in foundation walls below grade, or in exterior walls, of one of the following:

1. Mechanical Sleeve Seals: Installed between sleeve and pipe.

2.7 FABRICATED PIPING SPECIALTIES:

A. Drip Pans: Provide drip pans fabricated from corrosion-resistant sheet metal with watertight joints, and with edges turned up 2-1/2 inches. Reinforce top, either by structural angles or by rolling top over ¼ inch steel rod. Provide hole, gasket, and flange at low point for watertight joint and 1 inch drain line connection.

B. Pipe Sleeves: Provide pipe sleeves of one of the following:

1. Sheet-Metal: Fabricate from galvanized sheet metal; round tube closed with snaplock joint, welded spiral seams, or welded longitudinal joint. Fabricate from the following gauges: 3 inches and smaller, 20 gauge; 4 inches to 6 inches 16 gauge; over 6 inch, 14 gauge.

2. Steel-Pipe: Fabricate from Schedule 40 galvanized steel pipe; remove burrs. Provide fully welded waterstop/anchor ring fabricated from minimum 1/8 plate, extending minimum 1 inch from O.D. of sleeve, where noted in Part 3.

3. Iron-Pipe: Fabricate from cast-iron or ductile-iron pipe; remove burrs.

4. Sleeves for use with firestopping shall be fabricated in accordance with the installation instructions of the firestopping system.

PART 3 - EXECUTION

3.1 INSTALLATION OF PIPING SPECIALTIES:

A. Pipe Escutcheons: Install pipe escutcheons on each pipe penetration thru floors, walls, partitions, and ceilings where penetration is exposed to view; and on exterior of building. Secure escutcheon to pipe or insulation so escutcheon covers penetration hole, and is flush with adjoining surface.

B. Strainers: Install strainers full size of pipeline, in accordance with manufacturer’s installation instructions. Install pipe nipple and shutoff full port ball valve with ¾ inch hose end and cap in strainer blow down connection. Where indicated, provide drain line from shutoff valve to plumbing drain, full size of blow down connection.

1. Provide strainers in supply line ahead of the following equipment, and elsewhere as indicated.

a. Pumps

C. Dielectric Waterway: Install at each piping joint between ferrous and non-ferrous piping. Comply with manufacturer's installation instructions.

1. Not required in closed hydronic systems treated with corrosion inhibitors, where there is a bronze valve body between the two materials.
D. Mechanical Sleeve Seals: Loosely assemble rubber links around pipe with bolts and pressure plates located under each bolt head and nut. Push into sleeve and center. Tighten bolts until links have expanded to form watertight seal.

3.2 HYDRONIC SPECIALTIES INSTALLATION:

A. Manual Air Vent: Provide manual air vents at all high points and drops in the direction of flow, of all mains and risers of the hydronic systems, at heat transfer coils, radiation and elsewhere shown and as required for system air venting.

1. Provide enlarged air collection standpipe where large air quantities can accumulate.
2. Use a 1/2 inch ball valve with a soft copper tubing discharge pipe directed to a convenient collection point except as noted below.
3. Use a coin operated air vent inside terminal unit and baseboard radiation enclosures.

B. Provide automatic air vents where shown on drawings. Provide high capacity automatic air vents at all air separators, provide an isolation valve to allow removal of all automatic air vents, provide minimum 1/4 inch soft copper tubing to a convenient drain location, and to avoid water damage.

C. Air Separator or Air Eliminator: Install inline air separators in hydronic systems pump suction lines. Run air outlet piping to compression tank with 1/4 inch per foot (2 percent) upward slope towards tank. OR Provide high capacity air vent on air outlet. Install drain valve on units 2 inch and larger.

D. Pump Suction Diffuser: Install pump suction diffusers on hydronic systems pump suction inlet, adjust foot support to carry weight of suction piping. Install nipple and ball valve in blowdown connection. Arrange installation to allow strainer removal and replacement.

3.3 INSTALLATION OF FABRICATED PIPING SPECIALTIES:

A. Drip Pans: Locate drip pans under piping as indicated. Hang from structure with rods and building attachments, weld rods to sides of drip pan. Brace to prevent sagging or swaying. Connect 1" drain line to drain connection, and run to nearest plumbing drain or elsewhere as indicated.

B. Pipe Sleeves: In fire resistive construction, coordinate the use of sleeves with the firestopping system requirements. See Section 23 05 09. Do not install sleeves through structural members of work, except as detailed on drawings, or as reviewed by Architect/Engineer. Install sleeves accurately centered on pipe runs. Size sleeves so that piping and insulation will have free movement in sleeve, including allowance for thermal expansion; but not less than 2 pipe sizes larger than piping run. Install length of sleeve equal to thickness of construction penetrated, and finish flush to surface; except floor sleeves where noted below. Provide temporary support of sleeves during placement of concrete and other work around sleeves, and provide temporary closure to prevent concrete and other materials from entering sleeves.

1. Interior gypsum board, plaster, and masonry partitions: Install sheet metal sleeves.
2. Interior cast in place concrete walls: Install steel pipe sleeves.
3. Interior cast in place floors: Install steel pipe sleeves with water stop/anchor ring.
a. Extend floor sleeves in rooms ½ inch above level floor finish, in rooms ¾ inch above floor finish sloped to drain and 2 inches above finished floor in all mechanical equipment rooms and pipe chases.

4. Below ground and exterior cast-in-place concrete or masonry: Install steel pipe sleeves with waterstop/anchor ring.

5. For core drilled solid concrete or precast concrete with blockouts, no sleeve is required, except provide sheet metal “collar” fastened and caulked to floors required to have extended sleeves.

END OF SECTION 230518
PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of supports and anchors, of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. Regulatory Requirements: Comply with applicable plumbing codes pertaining to product materials and installation of supports and anchors.
2. NFPA Compliance: Hangers and supports shall comply with NFPA standard No. 13 when used as a component of a fire protection system.
3. UL and FM Compliance: Hangers, supports, and components shall be listed and labeled by UL and FM where used for fire protection piping systems.
4. Duct Hangers: SMACNA Duct Manuals
5. MSS Standard Compliance:
 a. Provide pipe hangers and supports of which materials, design, and manufacture comply with MSS SP-69.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data, including installation instructions for each type of support and anchor. Submit pipe hanger and support schedule showing Manufacturer's figure number, size, location, and features for each required pipe hanger and support.

B. Product certificates signed by the manufacturer of hangers and supports certifying that their products meet the specified requirements.

C. Maintenance Data: Submit maintenance data and parts list for each type of support and anchor. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Pipe Hangers and Supports:
 a. B-Line Systems Inc.
 b. ANVIL International
 c. PHD Manufacturing, Inc.
 d. Unistrut Metal Framing Systems
 e. Hubbard Enterprises (Supports for domestic water piping)
 f. Specialty Products Co. (Supports for domestic water piping.)
2. Saddles and Shield:
 a. ANVIL International
 b. Pipe Shields, Inc.
 c. B-Line
 d. Snapp Itz
 e. Erico
 f. Value Engineered Products, Inc.
 g. Grinnell

3. Concrete Inserts and Anchors:
 a. Unistrut Metal Framing Systems
 b. Power-Strut
 c. ITW Ramset/Red Head
 d. Hilti
 e. B-Line
 f. Erico
 g. Grinnell

2.2 PIPE HANGERS & SUPPORTS:

A. Hangers and support components shall be factory fabricated of materials, design, and manufacturer complying with MSS SP-69.
 1. Components shall have galvanized coatings where installed for piping and equipment that will not have field-applied finish.
 2. Pipe attachments shall have nonmetallic coating for electrolytic protection where attachments are in direct contact with copper tubing.

B. Adjustable Clevis Hanger: MSS Type.
 1. Steel Pipe, size 3/8" thru 30", Type 1.
 2. Non-insulated Copper Pipe, size 1/2" thru 4", Type 1. (PVC Coated)

C. Adjustable Swivel Ring for Non-insulated Pipe: MSS Type.
 1. Steel Pipe, size 1/2" thru 8", Type 7.
 2. Copper Pipe, size 1/2" thru 4", Type 7 (PVC Coated)

D. Pipe Clamps: MSS Type.
 2. Copper Pipe, size 1/2" thru 4", Type 8 (PVC Coated).

E. U Bolts: MSS Type.
 1. Steel Pipe, size 1/2" thru 30" Type 24
 2. Copper Pipe, size 1/2" thru 8", Type 24 (PVC Coated).

F. Straps: MSS Type 26.
G. Pipe Stanchion Saddle: MSS Type 37.

H. Yoke & Roller Hanger: MSS Type 43

I. Hanger Rods: Continuous threaded steel, sizes as specified.

J. Hangers:
 1. Hot Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" through 5": Adjustable wrought steel clevis.
 c. 6" and Over: Adjustable steel yoke and cast iron roll.
 2. Cold Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" and Over: Adjustable wrought steel clevis.
 3. Multiple or Trapeze: Structural steel channel (with web vertical and engineered for the specific applications), with welded spacers and hanger rods. Provide cast iron roll and base plate for hot pipe sizes six inches and over. Provide hanger rods one size larger than for largest pipe in trapeze. If the deflection at center of trapeze exceeds 1/360 of the distance between the end hangers, install an additional hanger at mid-span or use a larger channel.

K. Wall Supports for Horizontal Steel Pipe:
 1. ½ inch through 4 inches: Offset or straight j-hook.
 2. 4 inches and Over: Welded steel bracket Type 31, 32 or 33 and wrought steel clamp. Provide adjustable steel yoke and cast iron roll Type 44 for hot pipe 200 degrees F and over and for sizes six inches and over.

L. Supports for Vertical Pipe: Steel riser clamp. Type 8.

M. Upper Attachments:
 1. For attaching hanger rods to structural steel I-beams:
 a. Provide adjustable beam clamp, MSS-Type 21. Attach to bottom flange of beam.
 2. For attaching hanger rods to bar joists:
 a. When bottom chord is constructed of structural steel angles, provide square washer. Place hanger rod between backs of the two angles and support with the washer and dual locking nuts on top of the angles. Spot weld washer to angles.
 b. When bottom chord is constructed of round bars, provide Elcen No. 137 bar joint washer or equal.
2.3 CONCRETE INSERTS AND ANCHORS:

A. Inserts: Case shall be of galvanized carbon steel with square threaded concrete insert nut for hanger rod connection; top lugs for reinforcing rods, nail holes for attaching to forms. This type of upper attachment is to be used for all areas having poured in place concrete construction.
 1. Size inserts to suit threaded hanger rods.

B. Provide fasteners attached to concrete ceilings that are vibration and shock resistant. Provide hangers for piping attached to concrete construction with one of the following types.
 1. Concrete insert per MSS SP 69, Type 18.
 2. Powder driven fasteners subject to approval of Architect and Structural Engineer. Each fastener shall be capable of holding a test load of 1000 pounds whereas the actual load shall not exceed 50 pounds.
 3. Self-drilling expansion shields. The load applied shall not exceed one-fourth the proof test load required.
 4. Machine bolt expansion anchor. The load applied shall not exceed one-fourth the proof test load required.

C. Anchors: Carbon steel, zinc plated and coated with a clear chromate finish. Installation shall be in holes drilled with carbide-tipped drill bits or by use of self-drilling anchors.
 1. Provide anchors suitable for the location of installation and designed to withstand all forces and movements acting in the anchor. Manufacture pipe anchors in accordance with MSS SP 69. Provide a safety factor of four for the anchor installation.

2.4 SADDLES AND SHIELDS:

A. Protection Saddles: MSS Type 39; fill interior voids with segments of insulation matching adjoining insulation.

B. Protection Shields: MSS Type 40; 180 degrees arc, galvanized steel, minimum 12 inches long, to prevent crushing of insulation.

2.5 MISCELLANEOUS MATERIALS:

A. Steel Plates, Shapes, and Bars: ASTM A 36.

B. Cement Grout: Portland cement (ASTM C 150, Type I or Type III) and clean uniformly graded, natural sand (ASTM C 404, Size No. 2). Mix ratio shall be 1.0 part cement to 3.0 parts sand, by volume, with minimum amount of water required for placement and hydration.

C. Heavy-Duty Steel Trapezes: Fabricate from steel shapes selected for loads required; weld steel in accordance with AWS standards.

D. Pipe Alignment Guides: Provide factory-fabricated guides, of cast semi-steel or heavy fabricated steel, consisting of bolted two-section outer cylinder and base with two-section guiding spider bolted tight to pipe. Size guide and spiders to clear pipe and
PART 3 - EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which supports and anchors are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 PREPARATION:

A. Proceed with installation of hangers, supports and anchors only after required building structural work has been completed in areas where the work is to be installed. Correct inadequacies including (but not limited to) proper placement of inserts, anchors and other building structural attachments. Review Structural Drawings to obtain structural support limitations.

3.3 INSTALLATION OF BUILDING ATTACHMENTS:

A. Install building attachments within concrete or on structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten insert to forms. Where concrete with compressive strength less than 2500 psi is indicated, install reinforcing bars through openings at top of inserts.

B. Existing Construction:

1. In existing concrete construction, drill into concrete slab and insert and tighten expansion anchor bolt. Connect anchor bolt to hanger rod. Care must be taken in existing concrete construction not to sever reinforcement rods or tension wires.

3.4 INSTALLATION OF HANGERS AND SUPPORTS:

A. Install hangers, supports, clamps and attachments to support piping properly from building structure; comply with MSS SP-69. Arrange for grouping of parallel runs of horizontal piping to be supported together on field fabricated, heavy-duty trapeze hangers where possible. Install supports with maximum spacings complying with MSS SP-69. Where piping of various sizes is supported together by trapeze hangers, space hangers for smallest pipe size or install intermediate supports for smaller diameter pipe. Do not use wire or perforated metal to support piping, and do not support piping from other piping.

B. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers and other accessories.

C. Support fire-water piping independently from other piping systems.

D. Prevent electrolysis and abrasion in support of copper tubing by use of hangers and supports which are plastic coated, or with EPDM isolation strips. Duct tape or copper coated hangers are not acceptable.
E. Install hangers and supports to allow controlled movement of piping systems, to permit freedom of movement between pipe anchors, to facilitate action of expansion joints, expansion loops, expansion bends and similar units and within 1'-0" of each horizontal elbow.

F. Load Distribution: Install hangers and supports so that piping live and dead loading and stresses from movement will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes, and so that maximum pipe deflections allowed by ANSI B31.9 Building Services Piping Code is not exceeded.

H. Insulated Piping: Comply with the following installation requirements.
 1. Clamps: Attach clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ANSI B31.
 2. Saddles: Install Protection saddles where supported by pipe rollers. Fill interior voids with segments of insulation that match adjoining pipe insulation.
 3. Shields: Install galvanized steel protection shields, on all insulated piping 2 inches and less, except where required to be clamped. Where necessary to prevent dislocation, strap shield to pipe with wire ties or "Zip Strips".

I. Install horizontal hydronic and steam piping with the following minimum rod sizes and maximum spacing:

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>MAX. SPAN IN FEET</th>
<th>MIN. ROD SIZE-INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
<td>Copper</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1-1/2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

J. Support horizontal cast iron pipe as follows:
 1. Hub & Spigot: All sizes.
 a. 10 ft. max spacing: min of one (1) hanger per pipe section close to joint on the barrel. Also at change of direction and branch connections.
 b. Support vertical cast iron pipe at each story height and at its base. Secure vertical hub and spigot pipe immediately below the hub.
 c. Use hanger rods same size as for steel pipe.
 2. No-Hub: All sizes
 a. With Clamp-All and Anaheim Series 4000 stainless steel couplings and MG cast iron couplings: one hanger to each joint.
 b. With all other stainless steel band type couplings: one hanger to each side of joint.
c. Support all horizontal cast iron pipe within 18 inches of each joint and with 5 feet maximum spacing between hangers, except that pipe exceeding 5 feet in length shall be supported at intervals no greater than 10 feet.

d. Use hanger rods same size as for steel pipe.

e. Support vertical cast iron pipe at each story height and at its base. Support vertical no-hub pipe so that the weight is carried from the pipe to the support and not from the joint to the support.

K. Place a hanger within one foot of each horizontal elbow.

L. Use hangers which are vertically adjustable 1-1/2 inch minimum after piping is erected.

M. Support vertical steel and copper piping at every story height but at not more than 15 foot intervals for steel and 10 feet for copper.

N. Where several pipes can be installed in parallel and at same elevation, provide trapeze hangers.

O. Where practical, support riser piping independently of connected horizontal piping.

P. Each pipe drop to equipment shall be adequately supported. All supporting lugs or guides shall be securely anchored to the building structure.

Q. Securely anchor and support plumbing domestic water piping in chases or walls. Use factory manufactured clamps and brackets connected to fixture s, waste/vent piping or brackets connected to studs. Wires or straps will not be permitted.

1. When copper supplies are connected to flush valves, support the tubing by the studs or by a fixture, not by clamping to waste/vent piping.

2. Prevent copper tubes from making contact with steel brackets using fire retardant polyethylene inserts or other dielectric insulating material. Duct tape shall not be used.

R. Install anchors and fasteners in accordance with manufacturer’s recommendations and the following:

1. In the event a self-drilling expansion shield or machine bolt expansion shield is considered to have been installed improperly, the Contractor shall make an acceptable replacement or demonstrate the stability of the anchor by performing an on-site test under which the anchor will be subjected to a load equal to twice the actual load.

2. Powder-driven fasteners may be used only where they will be concealed after the construction is complete. Where an occasional fastener appears to be improperly installed, additional fastener(s) shall be driven nearby (not closer than 6 inches) in undisturbed concrete. Where it is considered that many fasteners are improperly installed, the Contractor shall test load any 50 successively driven fasteners. If 10 percent or more of these fasteners fail, the Contractor shall utilize other fastening means as approved and at no additional cost to the Owner.

3. Hangers for piping and ducts shall be attached to cellular steel floor decks with steel plates and bolted rod conforming to the steel deck manufacturer’s requirements. Where the individual hanger load exceeds the capacity of a single floor deck attachment, steel angles, beams or channels shall be provided to span the number of floor deck attachments required.
4. Welding may be used for securing hangers to steel structural members. Welded attachments shall be designed so that the fiber stress at any point of the weld or attachment will not exceed the fiber stress in the hanger rod.

3.5 INSTALLATION OF ANCHORS:

A. Install anchors at proper locations to prevent stresses from exceeding those permitted by ANSI B31.9, and to prevent transfer of loading and stresses to connected equipment.

B. Fabricate and install anchor by welding steel shapes, plates and bars to piping and to structure. Comply with ANSI B31.9 and with AWS Standards D1.1.

C. Where expansion compensators are indicated, install anchors in accordance with expansion unit manufacturer's written instructions, to control movement to compensators.

D. Anchor Spacings: Where not otherwise indicated, install anchors at ends of principal pipe-runs, at intermediate points in pipe-runs between expansion loops and bends. Make provisions for preset of anchors as required to accommodate both expansion and contraction of piping. Provide shop drawing for review by Engineer.

3.6 SHEET METAL DUCT HANGERS AND SUPPORTS:

A. Provide in accordance with SMACNA HVAC duct construction standards.

B. Additional Hanger Requirements:

1. 2" to 24" from flexible connections of fans.
2. 2" to 24" from the outlets or flexible connections of VAV control units or mixing boxes.
3. 12" to 36" from the main duct to the first hanger of long branch ducts.
4. 2" to 12" from the ends of all branch ducts and linear diffuser plenums.
5. 2" to 24" from fire damper break-away joints.
6. Hangers at throat and heal of round or square elbows 48" or greater in width.

3.7 EQUIPMENT SUPPORTS:

A. Fabricate structural steel stands to suspend equipment from structure above or support equipment above floor.

B. Grouting: Place grout under supports for piping and equipment.

C. Concrete bases for the mechanical equipment indoors or outdoors will be provided by the General Contractor only if shown on the architectural or structural drawings. Otherwise, all bases shall be provided by this Contractor.

D. For inertia bases, see Section 23 05 48 "Vibration and Seismic Controls for Mechanical Piping and Equipment".

E. This Contractor shall be responsible for the proper size and location of all bases and shall furnish all required anchor bolts and sleeves. If bases are provided by the General Contractor, furnish him with templates showing the bolt locations.
F. Equipment shall be secured to the bases with anchor bolts of ample size. Bolts shall have bottom plates and pipe sleeves and shall be securely imbedded in the concrete. All machinery shall be grouted under the entire bearing surface. After grout has set, all wedges, shims and jack bolts shall be removed and the space filled with non-shrinking grout. This Contractor shall provide lead washers at all equipment anchor bolts.

G. Construct equipment supports above floor of structural steel members or steel pipe and fittings. Brace and fasten with flanges bolted to structure.

H. Provide rigid anchors for ducts and pipes immediately after vibration connections to equipment. See also Section 23 05 48 “Vibration and Seismic Controls for Mechanical Piping”.

3.8 METAL FABRICATION:

A. Cut, drill, and fit miscellaneous metal fabrications for pipe anchors and equipment supports. Install and align fabricated anchors in indicated locations.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 for procedures of manual shielded metal-arc welding, appearance and quality of welds made, methods used in correcting welding work, and the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours at welded surfaces match adjacent contours.

3.9 ADJUSTING:

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe. Cut off the bottom of threaded rods so they are no more than one rod diameter below the bottom nut.

B. Touch-Up Painting: Immediately after erection of anchors and supports, clean field welds and abraded areas of shop paint and paint exposed areas with same material as used for shop painting to comply with SSPC-PA-1 requirements for touch-up of field-painted surfaces.

1. Touch-Up Painting: Cleaning and touch-up painting of field welds, bolted connections, and abraded areas of the shop paint on miscellaneous metal is specified in Division 9 section “Painting” of these specifications.

C. For galvanized surfaces clean welds bolted connections and abraded areas and apply galvanizing repair paint to comply with ASTM A 780.

END OF SECTION 230529
SECTION 230553 – IDENTIFICATION FOR MECHANICAL SYSTEMS

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of identification devices of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. ANSI Standards: Comply with ANSI A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each identification material and device required.

B. Schedules: Submit valve schedule for each piping system, typewritten and reproduced on 8-1/2" x 11" bond paper. Tabulate valve number, piping system, system abbreviation (as shown on tag), location of valve (room or space), size of valve, and variations for identification (if any). Only tag valves which are intended for emergency shut-off and similar special uses, such as valve to isolate individual system risers, individual floor branches or building system shut off valves. In addition to mounted copies, furnish extra copies for Maintenance Manuals as specified in Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

B. Mechanical Identification:

1. Allen Systems, Inc.
4. Industrial Safety Supply Co., Inc.
5. Seton Name Plate Corp.
6. PVC Specialties
7. Marking Systems, Inc. (MSI)

2.2 MECHANICAL IDENTIFICATION MATERIALS:

A. General: Provide manufacturer's standard products of categories and types required for each application as referenced in other Division-23 sections. Where more than single type is specified for application, selection is Installer's option, but provide single selection for each product category.
2.3 PLASTIC PIPE MARKERS:

A. Snap-On Type: Provide manufacturer's standard pre-printed, semi-rigid snap-on, color-coded pipe markers, complying with ANSI A13.1.

B. Insulation: Furnish 1 inch thick molded fiberglass insulation with jacket for each plastic pipe marker to be installed on uninsulated pipes subjected to fluid temperatures of 125 degrees F. (52 degrees C.) or greater. Cut length to extend 2 inches beyond each end of plastic pipe marker.

C. Small Pipes: For external diameters less than 6 inches (including insulation if any), provide full-band pipe markers, extending 360 degrees around pipe at each location, fastened by one of the following methods:
 1. Snap-on application of pre-tensioned semi-rigid plastic pipe marker.
 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 3/4 inch wide; full circle at both ends of pipe marker, tape lapped 1-1/2 inch.

D. Large Pipes: For external diameters of 6 inches and larger (including insulation if any), provide either full-band or strip-type pipe markers, but not narrower than 3 times letter height (and of required length), fastened by one of the following methods:
 1. Steel spring or non-metallic fasteners.
 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 1-1/2 inches wide; full circle at both ends of pipe marker, tape lapped 3 inches.
 3. Strapped-to-pipe (or insulation) application of semi-rigid type, with manufacturer's standard stainless steel bands.

E. Lettering: Comply with piping system nomenclature as specified, scheduled, shown, or to match existing building lettering nomenclature system and abbreviate only as necessary for each application length.

F. Arrows: Print each pipe marker with arrows indicating direction of flow, either integrally with piping system service lettering (to accommodate both directions), or as separate unit of plastic.

2.4 PLASTIC DUCT MARKERS:

A. General: Provide manufacturer's standard laminated plastic, duct markers.

B. For hazardous exhausts, use colors and designs recommended by ANSI A13.1.

C. Nomenclature: Include the following:
 1. Direction of air flow.
 2. Duct service (supply, return, exhaust, etc.)

2.5 PLASTIC TAPE:

A. General: Provide manufacturer's standard color-coded pressure-sensitive (self-adhesive) vinyl tape, not less than 3 mils thick.

B. Width: Provide 1-1/2 inches wide tape markers on pipes with outside diameters (including insulation, if any) of less than 6 inches, 2-1/2 inches wide tape for larger pipes.
C. Color: Comply with ANSI A13.1, except where another color selection is indicated.

2.6 VALVE TAGS:

A. Brass Valve Tags: Provide 19-gage polished brass valve tags with stamp-engraved piping system abbreviation in 1/4inch high letters and sequenced valve numbers 1/2inch high, and with 5/32inch hole for fastener.

1. Provide 1-1/2inch diameter tags, except as otherwise indicated.
2. Fill tag engraving with black enamel.

B. Valve Tag Fasteners: Provide manufacturer's standard solid brass chain (wire link or beaded type), and solid brass S-hooks of the sizes required for proper attachment of tags to valves, and manufactured specifically for that purpose.

C. Access Panel Markers: Provide manufacturer's standard 1/16-inch thick engraved plastic laminate access panel markers, with abbreviations and numbers corresponding to concealed valve. Include 1/8 inch center hole to allow attachment.

2.7 VALVE SCHEDULE FRAMES:

A. General: For each page of valve schedule, provide glazed display frame, with screws for removable mounting on masonry walls. Provide frames of finished hardwood or extruded aluminum, with non-glare type sheet glass.

2.8 ENGRAVED PLASTIC-LAMINATE SIGNS:

A. General: Provide engraving stock melamine plastic laminate, complying with FS L-P-387, in the sizes and thicknesses indicated, engraved with engraver's standard letter style of the sizes and wording indicated, black with white core (letter color) except as otherwise indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.

B. Thickness: 1/16-inch, except as otherwise indicated.

C. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.

2.9 PLASTICIZED TAGS:

A. General: Manufacturer's standard pre-printed or partially pre-printed accident-prevention tags, of plasticized card stock with matt finish suitable for writing, approximately 3-1/4-inch x 5-5/8-inch, with brass grommets and wire fasteners, and with appropriate pre-printed wording including large-size primary wording (as examples; DANGER, CAUTION, DO NOT OPERATE).

2.10 LETTERING AND GRAPHICS:

A. General: Coordinate names, abbreviations and other designations used in mechanical identification work, with corresponding designations shown, specified, scheduled and approved by the Owner/Engineer. Provide numbers, lettering and wording as indicated and approved by the Owner/Engineer for proper identification and operation/maintenance of mechanical systems and equipment.
PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS:

A. Coordination: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

3.2 DUCTWORK IDENTIFICATION:

A. General: Identify air supply, return, exhaust, intake and relief ductwork and duct access doors with duct markers; or provide stenciled signs and arrows, showing ductwork service and direction of flow, in black or white (whichever provides most contrast with ductwork color). Existing building identification shall match the method which exists in the building.

B. Location: In each space where ductwork is exposed, or concealed only by removable ceiling system, locate signs near points where ductwork originates or continues into concealed enclosures (shaft, underground or similar concealment), and at 50 foot spacing along exposed runs.

C. Access Doors: Provide duct markers or stenciled signs on each access door in ductwork and housings, indicating purpose of access (to what equipment), other maintenance and operating instructions, and appropriate safety and procedural information.

D. Concealed Doors: Where access doors are concealed above acoustical ceilings or similar concealment, plasticized tags may be installed for identification in lieu of specified signs, at Installer’s option.

3.3 PIPING SYSTEM IDENTIFICATION:

A. General: Install pipe markers of the following type on each system indicated to receive identification, and include arrows to show normal direction of flow. Existing building identification shall match the existing method which exists in the building.

B. Plastic pipe markers, with application system as indicated under "Materials" in this section. Install on pipe insulation segment where required for hot non-insulated pipes.

C. Locate pipe markers and color bands as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces (shafts, tunnels, plenums) and exterior non-concealed locations.

D. Near each valve and control device.

E. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.
F. Near locations where pipes pass through walls or floors/ceilings, or enter non-accessible enclosures.

G. At access doors, manholes and similar access points which permit view of concealed piping.

H. Near major equipment items and other points of origination and termination.

I. Spaced intermediately at maximum spacing of 25 feet along each piping run, except reduce spacing to 15' in congested areas of piping and equipment.

J. On piping above removable acoustical ceilings.

3.4 VALVE IDENTIFICATION:

A. General: Provide valve tag on valves in each piping system. List each tagged valve in valve schedule for each piping system.

1. Each individual system riser shut-off valves.

B. Mount valve schedule frames and schedules in mechanical equipment rooms where directed by Architect/Owner/Engineer.

C. Where more than one major mechanical equipment room is shown for project, install mounted valve schedule in each major mechanical equipment room, and repeat only main valves which are to be operated in conjunction with operations of more than single mechanical equipment room.

3.5 MECHANICAL EQUIPMENT IDENTIFICATION:

A. General: Install minimum 2 inch x 4 inch engraved plastic laminate equipment marker on each individual items of mechanical equipment. Provide marker for the following general categories of equipment.

1. Main building systems control and operating valves, including safety devices and hazardous units such as gas outlets.

2. Pumps and similar motor-driven units.

B. Lettering Size: Minimum 1/4 inch high lettering for name of unit.

C. Text of Signs: In addition to the identified unit, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

3.6 ADJUSTING AND CLEANING:

A. Adjusting: Relocate any mechanical identification device which has become visually blocked by work of this division or other divisions.

B. Cleaning: Clean face of identification devices, and glass frames of valve charts.

END OF SECTION 230553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. All drawings associated with the entire project, including the General Conditions of the Contract for Construction, General and Supplementary Conditions, and Division 01 specification sections shall apply to the Division 26 specifications and drawings. The Contractor shall be responsible for reviewing and becoming familiar with the aforementioned and all other Contract Documents associated with the project.

B. Where contradictions occur between this section and Division 01, the more stringent requirement shall apply.

C. Contractor shall be defined as any and all entities involved with the construction of the project.

1.2 SUMMARY:

A. This Section specifies the basic requirements for electrical installations and includes requirements common to more than one section of Division 26 and Division 28. It expands and supplements the requirements specified in sections of Division 01 through 23.

1.3 ELECTRICAL INSTALLATIONS:

A. Drawings are diagrammatic in character and do not necessarily indicate every required conduit, box, fitting, etc.

B. Drawings and specifications are complementary. Whatever is called for in either is binding as though called for in both. Report any discrepancies to the Engineer and obtain written instructions before proceeding. Where any discrepancies occur between the specifications and the drawings the more stringent requirement shall apply. The contractor shall include pricing for the more stringent and expensive requirements and actual work will be clarified during construction.

C. Drawings shall not be scaled for rough-in measurements or used as shop drawings. Where drawings are required for these purposes or have to be made from field measurement, take the necessary measurements and prepare the drawings.

D. The exact location for some items in this specification may not be shown on the drawings. The location of such items may be established by the Engineer during the progress of the work.

E. The contractor shall make the installation in such a manner as to conform to the structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or costs to the Owner. All equipment shall be installed so access is maintained for serviceability.
F. Before any work is begun, determine that equipment will properly fit the space and that conduit can be run as contemplated without interferences between systems, with structural elements or with the work of other trades.

G. Verify all dimensions by field measurements.

H. Arrange for chases, slots, and openings in other building components to accommodate electrical installations.

I. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring an access path for positioning prior to closing-in the building or space.

J. Where mounting heights are not detailed or dimensioned, install electrical conduits, boxes, and overhead equipment to provide the maximum headroom possible. In general, keep installations tight to structure.

K. Install electrical equipment to facilitate maintenance and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting and removal with minimum of interference with other installations.

L. Make allowance for expansion and contraction for all building electrical components and conduit systems that are subject to such.

M. The ceiling space shall not be “layered”. It is the contractor’s responsibility to offset and coordinate any systems as required to allow installation within the identified ceiling cavity. The contractor shall include labor and material in the base bid to accommodate such offsets.

N. In general, all conduit systems shall be routed as high as possible. Keep all equipment in accessible areas such as corridors and coordinate with systems and equipment from other sections.

O. Coordinate the installation of electrical materials and equipment above and below ceilings with suspension system, luminaires and other building components. Ductwork and piping shall not be installed above electrical panelboards, switchboards, and transformers.

1.4 COORDINATION:

A. Work out all installation conditions in advance of installation. The Contractor shall be responsible for preparing coordination drawings, showing all work, in all areas. The Contractor shall be responsible for providing all labor and material, including but not limited to all fittings, hangers, control devices, lighting, low voltage equipment, conduit, transformers, disconnects, etc., necessary to overcome congested conditions at no increase in contact sum. The Contractors base bid shall include any and all time and manpower necessary to develop such coordination efforts and drawings. Increases to contract sum or schedule shall not be considered for such effort.

B. Provide proper documentation of equipment, product data and shop drawings to all entities involved in the project. Refer to individual sections for requirements.
C. Coordination Drawings:

1. Coordination drawings shall be prepared by the Contractor for his utilization and are his responsibility to assure systems will be installed in a manner to allow all systems to function properly.

2. Prepare and submit required coordination drawings showing major elements, components, and systems of electrical equipment and materials in relationship with other building components. Prepare drawings to an accurate scale, large enough to indicate required detail, and showing the necessary dimensions. Indicate the locations of all equipment and materials, including clearances for servicing and maintaining equipment. Indicate movement and positioning of large equipment into the building during construction.

3. Coordination drawings are informational submittals. Submit coordination drawings to Engineer for information only to document proper coordination of all portions of work and that coordination issues have been identified and resolved prior to submitting to the Engineer and prior to commencing construction in each affected area. The review of the coordination drawings by the Engineer does not constitute a relief of responsibility of the Contractor or a change to the contract documents.

4. Prepare floor plans, reflected ceiling plans, elevations, sections, and details to conclusively coordinate and integrate all installations. Indicate locations where space is limited, and where sequencing and coordination of installations are of importance to the efficient flow of the work.

5. Clearly indicate solutions to space problems. Identification of space problems without solutions is not acceptable. Only areas clearly identified will be reviewed.

6. CADD Drawings: Electronic AutoCAD drawings are available for purchase by the Contractor from the Engineer. Contact Engineer for further information in acquiring CADD drawings. The Engineer’s Construction documents cannot be used directly for coordination drawings. They are for information and initial coordination only.

D. Existing Conditions:

1. Contractor shall carefully survey existing conditions prior to bidding work. In addition,

2. Provide proper coordination of electrical work with existing conditions.

3. Contractor shall report any issues or conflicts immediately to Engineer before commencing with work and prior to purchasing equipment and materials. Start of work indicates acceptance of conditions.

1.5 COORDINATION WITH OTHER DIVISIONS:

A. General:

1. Coordinate all work to conform to the progress of the work of other trades.

2. Complete the entire installation as soon as the condition of the building will permit. No extras will be allowed for corrections of ill-timed work, when such corrections are required for proper installation of other work.

B. Coordinate ceiling cavity space carefully with all trades. In the event of conflict, install mechanical and electrical systems within the cavity space allocation in the following order of priority:

1. Equipment and required clearances

2. Plumbing waste, cooling coil drain piping and roof drain mains and leaders.

3. Ductwork mains.

4. Low pressure ductwork and air devices.
5. Electrical conduits, raceways and cable tray.
6. DDC control wiring and other low voltage systems.

C. Chases, Inserts and Openings:

1. Provide measurements, drawings and layouts so that openings, inserts and chases in new construction can be built in as construction progresses.
2. Check sizes and locations of openings provided, including the access panels for equipment in hard lid ceilings and wall cavities.
3. Any cutting and patching made necessary by failure to provide measurements, drawings and layouts at the proper time shall be done at no additional cost in contract sum.

D. Support Dimensions: Provide dimensions and drawings so that concrete bases and other equipment supports to be provided under other sections of the specifications can be built at the proper time.

E. Coordinate the cutting and patching of building components to accommodate the installation of electrical equipment and materials.

F. Modifications required as result of failure to resolve interferences, provide correct coordination drawings or call attentions to changes required in other work as result of modifications shall be paid for by responsible Contractor/Subcontractor.

1.6 DESIGN WORK REQUIRED BY CONTRACTOR:

A. The construction of this project requires the Contractor to include the detailing and design of select systems and/or subsystems. All such design work associated with the development of the coordination drawings shall be the complete responsibility of the Contractor.

B. The Contractor shall take the full responsibility to develop and complete routing strategies which will allow fully coordinated system to be installed in a fully functional manner. The Engineers contract drawings shall be for system design intent and general configurations.

C. Systems or subsystems which require design responsibility by the contractor include but are not limited to:

1. Temporary Facilities
2. Fire alarm shop drawings
3. Equipment supports, hangers, anchors and seismic systems not fully detailed nor specified in these documents, or catalogued by the manufacturer
4. Seismic restraint systems

1.7 PROJECT CONDITIONS:

A. The contractor shall attend a pre-bid walk-thru, when required under Division 01, and shall make themselves familiar with the existing conditions. No additional costs to the Owner shall be accepted for additional work for existing conditions.

B. Provide field verification of all conditions prior to submitting bids.

C. Report any damaged equipment or systems to the Owner prior to any work.
D. Protect all work against theft, injury or damage from all causes until it has been tested and accepted.

E. Be responsible for all damage to the property of the Owner or to the work of other contractors during the construction and guarantee period. Repair or replace any part of the work which may show defect during one year from the final acceptance of all work, provided such defect is, in the opinion of the Architect, due to imperfect material or workmanship and not due to the Owner's carelessness or improper use.

F. The Contractor shall coordinate and co-operate with Owner at all times for all new to existing connections.

G. Provide temporary electrical connections where required to maintain existing areas operable.

H. Coordinate all services shut-down with the Owner; provide temporary services. Coordinate any required disruptions with Owner, at a minimum one week in advance.

I. Minimize disruptions to operation of electrical systems in occupied areas.

SAFETY:

A. Refer to Division 01.

EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS:

A. Refer to Division 01 and conform with the Owners requirements.

REQUIREMENTS OF REGULATORY AGENCIES:

A. Refer to Division 01.

B. Execute and inspect all work in accordance with Underwriters Laboratories (UL), and all local and state codes, rules and regulations applicable to the trade affected as a minimum, but if the plans and/or specifications call for requirements that exceed these rules and regulations, the more stringent requirement shall be followed. Follow application sections and requirements and testing procedures of NFPA, IEEE, NEMA, CBM, ANSI, NECA, ICEA and IETA.

C. Comply with standards in effect at the date of these Contract Documents, except where a standard or specific date or edition is indicated.

D. Energy Codes: All equipment and installations shall conform to Federal, State, and local Energy Conservation Standards.

E. The handling, removal and disposal of regulated liquids or other materials shall be in accordance with U.S. EPA, state and local regulations.

F. The handling, removal and disposal of lead based paint and other lead containing materials shall comply with EPA, OSHA, and any other Federal, State, or local regulations.
G. After entering into contract, Contractor will be held to complete all work necessary to meet these requirements without additional expense to the Owner.

H. All material used on this project shall be UL listed and labeled and be acceptable to the authority having jurisdiction as suitable for the use intended.

1.11 PERMITS AND FEES:

A. Refer to Division 01.

B. Contractor shall arrange for and pay for all permits, inspections, licenses and certificates required in connection with the work.

1.12 PROJECT SEISMIC REQUIREMENTS:

A. Installation shall comply with the local seismic requirements for the area of installation. Provide restraints, bracing, anchors, vibration isolation, seismic snubbers, and all other components required for the installation.

B. All electrical and fire alarm systems shall be installed to meet NFPA and IBC Seismic requirements.

1. Where any conflicts arise the more stringent requirements shall be applicable.

2. The design of the seismic requirements shall be the responsibility of the contractor.

1.13 TEMPORARY FACILITIES:

A. Light, Heat, Power, Etc. Responsibility for providing temporary electricity, heat and other facilities shall be as identified in these specifications, as shown on the drawings and as specified in Division 01.

B. Building distribution equipment and devices (existing or new) shall not be used without written permission of the Owner. If used for temporary power, the equipment shall be properly maintained and any damage resulting from use shall be repaired by the Contractor. The guarantee period for new equipment shall not begin until the equipment is turned over to the Owner.

C. If AC power systems or their backup systems serving telecommunications, computer equipment, or their associated HVAC equipment and controls are taken out of service, for any reason, the Contractor shall be responsible for providing temporary systems during the period when the AC power systems or their backup systems are out of service. The Contractor shall be responsible for providing temporary power to all loads being interrupted.

1.14 PRODUCT OPTIONS AND SUBSTITUTIONS:

A. Refer to the Instructions to Bidders and Division 01.

B. The burden of proof that proposed equipment is equal in size, capacity, performance, and other pertinent criteria for this specific installation, or superior to that specified is up to the Contractor. Substituted equipment will only be allowed where specifically listed in a written addendum. If substitutions are not granted, the specified materials and equipment must be installed. Where substituted equipment is allowed, it shall be the Contractor's responsibility to notify all related
trades of the accepted substitution and to assume full responsibility for all costs caused as a result of the substitution.

C. Materials and equipment of equivalent quality may be submitted for substituted prior to bidding. This may be done by submitting to the Architect/Engineer at least ten (10) working days prior to the bid date requesting prior review. This submittal shall include all data necessary for complete evaluation of the product.

1. Substitutions shall be allowed only upon the written approval of the Architect/Engineer. NO EXCEPTIONS.
2. The Contractor shall be responsible for removal, replacement and remedy of any system or equipment which has been installed which does not meet the specifications or which does not have prior approval.

1.15 SUBMITTALS:

A. General

1. Refer to the Conditions of the Contract (General and Supplementary), Division 01. Contractor shall provide a submittal schedule appropriate for the size and duration of the project. Limit the number of large submittals being reviewed at one time and coordinate timing of sections that are dependent on each other.
2. The Contractor shall identify any "long lead time" items which may impact the overall project schedule. If these submittal requirements affect the schedule, the Contractor shall identify the impacts and confer with the Engineer within two weeks of entering into the contract.
3. The front of each submittal package shall be identified with the specification section number, job name, Owner's project number, date, Prime Contractor and Subcontractor's names, addresses, and contact information, etc. Each Specification Section shall be submitted individually and shall adequate annotation to indicate the equipment/materials/etc. within the section. Submittals with incomplete information will not be reviewed and will be sent back to be corrected.
4. Submittals shall be provided electronically. All electronic submittals need to be complete with all design information and stamped for conformity by the contractor. Submittals will be reviewed, marked appropriately and returned by the same means received.
5. An index shall be provided which includes:
 a. Product
 b. Specification Section
 c. Manufacturer and Model Number
7. Submittal schedule shall be provided for review within four (4) working weeks from award of contract to successful bidder.

B. Basis of Design: The manufacturer's material or equipment listed first in the specifications or on the drawings are the basis of design and are provided for the establishment of size, capacity, grade and quality. If alternates are used in lieu of the first names, the cost of any changes in construction required by their use shall be borne by this Contractor.

C. Contractor Review: Submittal of shop drawings, product data, and samples will be accepted only when submitted by the Contractor. Each submittal shall be reviewed by the contractor for general conformance with contract requirements and stamped by the respective contractor prior to submittal to the Architect/Engineer. Any submittal not stamped or complete will be sent back. Data
submitted from subcontractors and material suppliers directly to the Architect/Engineer will not be processed unless written prior approval is obtained by the Contractor.

D. Submittal Review Process: Before starting work, prepare and submit to the Architect/Engineer shop drawings and descriptive product data required for the project. Continue to submit in the stated format after each Architect/Engineer's action until a "No Exception Taken" or "Make Correction Noted" action is received. When a "Make Corrections Noted" is received, make the required corrections for inclusion in the operation and maintenance manual (O&M). Submittals marked "Make Corrections Noted" shall not be resubmitted during the submittal process. Unless each item is identified with specification section and sufficient data to identify its compliance with the specifications and drawings, the item will be returned "Revise and Resubmit". Where an entire submittal package is returned for action by the Contractor, the Engineer may summarize comments in letter format and return the entire set. Submittals shall be prepared per the requirements listed in each Division 26 and Division 28 Section.

E. The Design Professional’s review and appropriate action on all submittals and shop drawings is only for the limited purpose of checking for conformance with the design concept and the information expressed in the contract documents. This review shall not include:

1. Accuracy or completeness of details, such as quantities, dimensions, weights or gauges, fabrication processes
2. Construction means or methods
3. Coordination of the work with other trades
4. Construction safety precautions

F. The Design Professional’s review shall be conducted with reasonable promptness while allowing sufficient time in the Design Professional’s judgment to permit adequate review. Review of a specific item shall not indicate that the Design Professional has reviewed the entire assembly of which the item is a component.

G. The Design Professional shall not be responsible for any deviations from the contract documents not brought specifically to the attention of the Design Professional in writing by the Contractor. This shall clearly identify the design and the specific element which vary from the Design. The Contractor shall be responsible for all remedy for lack of strict conformance associated with this criteria.

H. The Design Professional shall not be required to review partial submissions or those for which submissions of correlated items have not been received.

I. If more than two submittals (either for product data, shop drawings, record drawings, test reports, or O&M’s are made by the Contractor, the Owner reserves the right to charge the Contractor for subsequent reviews by their consultants.

J. The contractor shall cloud all changes made on submittals that are marked “Revise and Resubmit.”

K. Submit proposed changes to electrical room or other equipment room layouts when revised from contract documents prior to installation.
L. Mark submittals with designations as shown on the drawings and identify as required by Specification Sections. Identification shall contain the information as required in details and each label shall be submitted in list form with disconnects, panelboards, switchboards, overcurrent protection devices and utilization equipment.

1.16 SPECIFIC CATEGORY SUBMITTAL REQUIREMENTS:

A. Product Listing:

1. Prepare listing of major electrical equipment and materials for the project, within (2) two weeks of signing the Contract Documents and transmit to the Engineer of Record.
2. Unless otherwise specified, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.
3. When two or more items of same material or equipment are required (lighting, wiring devices, switchgear, panelboards, protective devices, etc.) they shall be of the same manufacturer. Product manufacturer uniformity does not apply to raw materials, bulk materials steel bar stock, welding rods, solder, fasteners, except as otherwise indicated.

B. Schedule of Values

1. Provide Preliminary Schedule of Values to Engineer with product data submittal within four (4) weeks from award of contract to successful bidder. Provide according to the following descriptions:
 a. General Construction (total)
 b. Mobilization/Demobilization
 c. Demolition
 d. Lighting - Interior
 e. Lighting Controls
 f. Basic Materials/Devices/Equipment Connections
 g. Fire Alarm
2. Provide a final Schedule of Values at close-out of project including updated values based on actual installation.

C. Product Data:

1. Where pre-printed data covers more than one distinct product, size, type, material, trim, accessory group or other variation, mark submitted copy to indicate which of the variations is to be provided.
2. Delete or mark-out portions of pre-printed data which are not applicable.
3. Where operating ranges are shown, mark data to show portion of range required for project application.

D. Shop Drawings:

1. Shop Drawings are defined as electrical system layout drawings prepared specifically for this project, or fabrication and assembly type drawings of system components to show more detail than typical pre-printed materials.
2. Prepare Electrical Shop Drawings, except diagrams, to accurate scale, min 1/8”-1'-0", unless otherwise noted.
E. Coordination Drawings: See applicable paragraph in this specification section.

F. Test Reports:
 1. Submit test reports which have been signed and dated by the accredited firm or testing agency performing the test.
 2. Prepare test reports in the manner specified in the standard or regulation governing the test procedure (if any) as indicated.
 3. Submit test reports as required for O & M manuals.

G. Operation and Maintenance Data: See applicable paragraph in this specification section.

 1. Provide report of settings, parameters, programing inputs and parameters, etc., installed at each piece of electrical equipment that allows adjustments to be made in the field and those set at the factory. The report shall be arranged by specification section and each piece of equipment broken out individually or by listing of equipment if the same settings are installed in multiple pieces of equipment.
 2. Report shall be submitted and received by the Engineer at least fifteen calendar days prior to the contractor's request for final observation. Include in the O & M Manual after review and "No Exceptions Taken" has been accomplished.

I. Software Licenses: Provide documentation of ownership under the owner's corporate name (coordinate with owner's representative for exact ownership wording) for Software Licenses provided as part of the work. Include information for updates, subscription requirements if applicable, backup, support, login, passwords, date when purchased, expiration date if applicable, version, etc. Include in the O & M Manual after review and "No Exceptions Taken" has been accomplished.

J. Record Drawings: See applicable paragraph in this specification section.

1.17 DELIVERY, STORAGE AND HANDLING:

A. Refer to the Division 01, Sections on Transportation and Handling and Storage and Protection.

B. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels, and similar information needed for distinct identifications; adequately packaged and protected to prevent damage during shipment, storage, and handling.

C. Check delivered equipment against contract documents and submittals.

D. Store equipment and materials at the site, unless off-site storage is authorized in writing. Protect stored equipment and materials from damage and weather.

E. Coordinate deliveries of electrical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.
1.18 DEMOLITION/REMODEL WORK:

A. Refer to Division 01 Section on Summary of work for requirements on working in Owner-occupied areas of the existing building and Division 02 section on selective demolition. The following are additions and modifications.

B. During the demolition phase of this contract it is the responsibility of this Contractor to carefully remove existing equipment, conduits, boxes, and related items either as shown on the demolition drawings as being removed, or as required for the work. These items shall be tagged, protected from damage and stored as directed by the Owner. A list of all items stored shall be turned over to the Architect/Engineer. At the completion of the remodeling works or when directed by the Engineer, all stored items not reused or wanted by the Owner shall be removed from the premises.

C. The project involves renovation and remodel of the existing building. On the drawings, work may be denoted by showing items as bold or light line weight. These annotations and terms are amplified as follows:

1. Bold Print (when used): Work included in this contract is denoted in bold print or darker line weight.
2. Light Print (when used): Work shown lightly indicates existing conditions to remain.
3. **TO BE DEMOLISHED** [R]: Contractor shall remove the existing item and the associated existing wiring. Where the raceway serving the equipment is accessible (via removal of suspended ceiling, crawl space, etc.) the raceway shall also be removed. Where the removal of a raceway leaves visible evidence on an existing surface which is not being repaired or replaced by the General Contractor, this contractor shall repair the surface. Where the existing raceway is concealed, the outlet box shall be cleaned, and a blank cover-plate installed. Where the concealed raceway is uncovered by demolition performed by the General Contractor, the raceway shall be removed (or extended to new location if appropriate).
4. **TO BE RELOCATED** [RL]: Existing item to be relocated. Contractor shall remove the existing item, and store in a safe place. The existing item shall be relocated to the new position as called for on the drawings. At Contractor’s option, the existing wiring may be extended, or new wiring may be run from the source. Based upon the item to be relocated, the Contractor shall perform the following function:
 - Luminaires Clean and reinstall in new location.
 - Receptacles Clean and reinstall in new location.
5. **TO BE REPLACED** [ER]: Existing item to be removed and reinstalled to facilitate new work, maintain circuit continuity. Contractor shall perform the following function based upon the item to remain:
 - Luminaires Install new device in existing location.
 - Switches Install new device in existing location.
 - Receptacles Install new device in existing location.
6. **TO REMAIN** [E]: Existing item to be removed and reinstalled only as required to facilitate new work. Necessity to relocate shall be determined by Contactor during field investigations, prior to submitting bid.
D. Existing equipment that is removed and not scheduled to be reused shall remain the property of the Owner and be delivered for disposition unless specifically indicated otherwise and shall be stored in a location designated by the Owner. Items which are removed and not wanted by the Owner shall become the property of the Contractor and shall be removed from the site.

E. Existing equipment that is removed and is to be reused shall be cleaned, serviced and operable before being reinstalled.

F. Revise panelboard schedules to reflect removal or relocation of equipment. Circuit integrity of equipment in adjacent areas shall be left intact.

G. Where remodeling interferes with existing circuits and equipment which are not to be removed, such circuits and equipment shall be reworked and relocated as required to complete the project. Take care to avoid overloading the bus when circuits are moved to a different phase in an existing panel.

H. The Contractor shall remove all distribution equipment, conductors, etc., which are indicated to be removed or which must be removed to accommodate demolition. Equipment to be removed may require reworking conduit and wiring in order to maintain service to other equipment.

I. Where remodeling interferes with circuits serving areas outside of the project or phase limits or which are remodeled in later phases of the project, circuits shall be reworked or temporary circuits provided as required. Take care to avoid overloading the bus when circuits are moved to a different phase in an existing panel.

J. Existing equipment and circuiting shown are based on field surveys and/or Owner furnished drawings. The Contractor shall verify conditions as they exist with necessary adjustments being made to the drawing information.

K. Coordinate the routing of all conduits with the existing mechanical and plumbing systems in order to avoid conflicts with ducts, pipes, etc. Where existing electrical boxes, conduit, or equipment interfere with installation of new ducts, plumbing, walls, soffits, luminaires, outlets, etc., the Contractor shall resolve the conflict with the appropriate trade.

L. Reuse of existing luminaires, devices, conduits, boxes, or equipment will be permitted only where specifically indicated on the drawings or allowed under the appropriate section of the specifications.

M. Electrical Outages: Electrical outages must be held to a minimum. The Contractor shall submit a Method of Procedure (MOP) to the Owner for each outage, detailing the reasons for the outage, areas affected and the sequence of procedures to accomplish work. The Contractor shall meet with the Owner to set a schedule and date for the outage based on the MOP. Due to the critical implications of power outages, the Owner may direct the Contractor as to the time of day or night and date an outage may take place.

1. The Contractor will be responsible for providing temporary power required for the duration of the outages. The required outages to connect and disconnect the temporary power will require a MOP as described above.
COMMON WORK RESULTS FOR ELECTRICAL 260500-13

N. PCB Ballasts: PCB type ballasts may be present in existing luminaires. If PCB ballasts are discovered by the Contractor, report such occurrence to the Owner immediately. The Contractor shall remove and dispose of PCB type ballasts at an E.P.A. (Environmental Protection Agency) approved site in the prescribed manner acceptable to the EPA. The Contractor shall pay all fees associated with this work.

O. Hazardous Material: If suspected hazardous material, in any form, is discovered by the Contractor in the process of his work, he shall report such occurrence to the Owner immediately. The Owner will determine the action to be taken. Hazardous material removed is not a part of the work to be done under this Division.

P. Lamp Disposal: Contractor is responsible for sending removed lamps to be recycled. The Contractor should ensure the recycling agency meets RCRA and CERCLA regulations. Provide certificate of compliance in O&M Manuals.

Q. On Site Metering: When called for in the specifications or on the drawings, the Contractor shall meter the points indicated for a period of 30 days prior to start of construction to verify existing load. Meter shall record voltage; amperage; KVA; and Power Factor for each phase and sum of the phases. The meter shall continually average the power demand over maximum 15 minute intervals as required by NEC 220.87. Compile a metering summary report and deliver results to engineer after 7 days and after 30 days. Verify existing loads at and downstream of the metering location and provide list to engineer of what loads are not on during the 30 day metering and the reason why. Organize list by equipment name. If any loads have been removed or permanently abandoned, Turn circuit breaker off and relabel as SPARE.

1.19 CUTTING AND PATCHING:

A. This Article specifies the cutting and patching of electrical equipment, components, and materials to include removal and legal disposal of selected materials, components, and equipment. Coordinate the cutting and patching of building components to accommodate the installation of electrical equipment and materials.

B. Refer to the Division 01 Section covering cutting and patching for general requirements.

C. Do not endanger or damage installed Work through procedures and processes of cutting and patching.

D. Arrange for repairs required to restore other work, because of damage caused as a result of electrical installations.

E. No additional compensation will be authorized for cutting and patching Work that is necessitated by ill-timed, defective, or non-conforming installations.

F. Cut, remove and legally dispose of selected electrical equipment, components, and materials as indicated, including, but not limited to removal of conductors, conduit, luminaires, boxes, devices and other electrical items made obsolete by the new Work.

G. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
H. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

I. Locate, identify, and protect electrical services passing through remodel or demolition area and serving other areas required to be maintained operational.

1.20 ROUGH-IN:

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment shop drawings and manufacturer's requirements for actual provided equipment for rough in requirements.

C. Work through all coordination before rough-in begins. See applicable Article above.

1.21 ACCESSIBILITY:

A. Install equipment and materials to provide required code clearances and access for servicing and maintenance. Coordinate the final location with piping, ducts, and equipment of other trades to insure proper access for all trades. Coordinate locations of concealed equipment, disconnects, and boxes with access panels and doors. Allow ample space for removal of parts, fuses, lamps, etc. that require replacement or servicing.

B. Extend all conduits so that junction and pull boxes are in accessible locations.

C. Provide access panel or doors where equipment or boxes are concealed behind finished surfaces.

D. Furnish hinged steel access doors with concealed latch, whether shown on drawings or not, in all walls and ceilings for access to all concealed valves, shock absorbers, air vents, motors, fans, balancing cocks, and other operating devices requiring adjustment or servicing. Refer to Division 01 for access door specification and requirements.

E. The minimum size of any access door shall not be less than the size of the equipment to be removed or 12 inches x 12 inches if used for service only.

F. Furnish doors to trades performing work in which they are to be built, in ample time for building in as the work progresses. Whenever possible, group valves, cocks, etc., to permit use of minimum number of access doors within a given room or space.

G. Access doors in fire rated walls and ceilings shall have equivalent U.L. label and fire rating.

1.22 TESTING:

A. Submit test reports as outlined in Division 01 Sections on Quality Control Services and each Division 26 Section. Deliver to Engineer at least one week prior to calling for substantial completion observations.
B. Testing as required by these specifications shall pertain to all equipment, wiring, devices, etc. installed under this contract and being reused.

C. General Scope:

1. Perform all tests and operational checks to assure that all electrical equipment, both Contractor and Owner-supplied, is operational within industry and manufacturer's tolerances and is installed in accordance with design specifications.
2. The tests and operational checks shall determine the suitability for energization.
3. Schedule tests and give a minimum of two weeks advance notice to the Engineer. Reschedule testing for Owner convenience if required.

D. Test Report: Submit electronic copies of the completed report to the Engineer no later than fifteen (15) days after completion of test unless directed otherwise. The test report shall be bound and its contents certified. A final compilation of all Test Reports shall be submitted with the Testing and Equipment Settings Report (Refer to Operation and Maintenance Data paragraphs).

E. Failure to Meet Test:

1. Contractor shall replace the defective material or equipment as necessary, and have test repeated until test proves satisfactory without additional cost to the Owner.

F. The Contractor or testing agency shall have a calibration program which maintains all applicable test instrumentation within rated accuracy. The accuracy shall be traceable to the National Institute of Standards and Technology (NIST) in an unbroken chain. Instruments shall be calibrated in accordance with the following frequency schedule:

1. Field Instruments: 6 months
2. Laboratory Instruments: 12 months
3. Leased specialty equipment: 12 months. (Where accuracy is guaranteed by lessor)
4. Dated calibration labels shall be visible on all test equipment.

1.23 NAMEPLATE DATA:

A. Provide equipment with permanent operational data nameplate on each item of power operated equipment, indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data. Install equipment so that nameplate is readily visible.

1.24 CLEANING:

A. Refer to the Division 01 Section on project closeout or final cleaning for general requirements for final cleaning.

1.25 RECORD DOCUMENTS:

A. Refer to the Division 01 Section on Project Closeout or Project Record Documents for requirements. The following paragraphs supplement the requirements of Division 01.
B. Keep a complete set of record document prints in custody during entire period of construction at the construction site. Documents shall be updated on a weekly basis.

C. Mark Drawings to indicate revisions to conduit size and location both exterior and interior; actual equipment locations, dimensioned from column lines; concealed equipment, dimensioned to column lines; distribution and branch electrical circuitry; fuse and circuit breaker size and arrangements; support and hanger details; Change Orders; concealed control system devices, and any other relevant deviations from the Contract Documents.

D. Mark shop drawings to indicate approved substitutions; Change Orders; actual equipment and materials used.

E. Schedules:

1. Mark luminaire schedule on drawings to indicate manufacturer and complete catalog numbers of installed equipment.
2. Mark schedules including panelboard, switchboard, motor control center, mechanical, kitchen and similar equipment schedules on drawings to indicate installed equipment and materials used, and any deviations or revisions to electrical load data and calculations.

F. Revisions to the Contract Documents shall be legible and shall be prepared using the following color scheme.

1. Red shall indicate new items, deviations and routing.
2. Green shall indicate items removed or deleted.
3. Blue shall be used for relevant notes and descriptions.

G. At the completion of the project, obtain from the Architect a complete set of the Contract Documents in a read-only electronic format (.pdf unless otherwise noted). This set will include all revisions officially documented through the proper channels. Using the above color scheme, transfer any undocumented revisions from the construction site record drawings to this complete set. Submit completed documents for review. This contract will not be considered completed until these record documents have been received and accepted.

H. Contractor may propose methods of maintaining record documents on electronic media. Obtain approval of Engineer and Owner prior to proceeding. Marked-up .pdf format readable by Bluebeam is preferred.

1.26 OPERATION AND MAINTENANCE DATA:

A. Refer to the Division 01 Section on project closeout or operation and maintenance data for procedures and requirements for preparation and submittal of maintenance manuals.

B. No later than four (4) weeks prior to the completion of the project provide complete set of operating and maintenance manuals, or as specified in Sections of Division 01 (whichever is more stringent). Operation and Maintenance Data shall be submitted in electronic format.
C. Operation and Maintenance Data: Submit operation and maintenance data in maintenance manual in accordance with requirements of applicable Division 26 and 28 Sections and Division 01. Provide Operating and Maintenance Instructions in electronic format covering all equipment furnished. Manuals shall include all information required below, as indicated in each Division 26 and 28 Section, and the following for each piece of equipment:

1. The job name and address, contractor's name, address, and phone number, and each subcontractor's name, address, and phone number shall be identified at the front of the electronic submittal.
2. Name, address and telephone number to be contacted of the local authorized service organization/company and individual to be contacted for service and maintenance for each item of equipment.
3. Submit operation and maintenance data, schedule of recommended service and parts lists for all materials and products specified and intended for installation. Include description of function, normal operating characteristics and limitations, fuse curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.
4. Manufacturer's printed operating procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, shut-down, and emergency instructions; and summer and winter operating instructions.
5. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
6. Servicing instructions and lubrication charts and schedules.
7. Manufacturer's service manuals for all electrical equipment provided under this contract.
8. Complete equipment and protection wiring diagrams. All wiring diagrams shall show color coding of all connections and mounting dimensions of equipment.
9. Equipment identification numbers and adjustment clearly indicated for each piece of equipment.
11. Provide manuals tabbed and divided into major sections and special equipment. Mark the individual equipment when more than one model or make is listed on a page. Provide detailed table of contents.
12. Record Set of Shop Drawings: Shop drawings corrected to show as-built conditions. Transfer modifications from field set.

D. This contract will not be considered completed nor will final payment be made until all specified material, including test reports, settings reports, and final Schedule of Values with all Electrical change order costs included and identified is provided and the manual is reviewed by the Architect/Engineer.

1.27 PROJECT CLOSEOUT LIST:

A. In addition to the requirements specified in Division 01, the contractor shall be responsible for providing the items listed within these specifications prior to applying for certification of substantial completion. Refer to individual specification sections for additional requirements.

1.28 WARRANTIES:

A. Refer to the Division 01 Section on Warranties and Bonds for procedures and submittal requirements for warranties. Refer to individual equipment specifications
for warranty requirements. In no case shall the warranty for the total electrical system be less than one year from date of acceptance by the Owner.

B. Compile and assemble the warranties specified in Division 26 and 28 into a separated set of vinyl covered, three ring binders, tabulated and indexed for easy reference.

C. Provide complete warranty information for each item. Information to include product or equipment description, date of beginning of warranty or bond; duration of warranty or bond; and names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services.

1.29 CONSTRUCTION REQUIREMENTS:

A. The contractor shall maintain and have available at the jobsite current information on the following at all times:

1. Up to date record drawings.
2. Submittals
3. Site observation reports with current status of all action items.
4. Test results; including recorded values, procedures, and other findings.
5. Outage information.

1.30 EQUIPMENT HOUSEKEEPING PADS:

A. Provide 4” high concrete housekeeping pad for all floor mounted equipment including, but not limited to: switchgear, switchboards, motor control centers, floor mounted distribution panelboards, floor mounted branch panelboards, and floor mounted dry type transformers. Fabricate pads as follows:

1. Coordinate size of equipment bases with actual unit sizes provided. Fabricate base 3” larger in both directions than the overall dimensions of the supported unit.
2. Form concrete pads with framing lumber with form release compounds. Chamfer top edge and corners of pad.
3. Place concrete and allow proper curing before installation of units. Use Portland cement that conforms to ASTM C 150; 54,000-psi compressive strength, and normal weight aggregate.
4. Anchor housekeeping pads to slab using #3 rebar bent in “L” or “Z” shape 12 inch on center on each side of slab.

END SECTION 260500
PART 1 - GENERAL

1.1 SUMMARY:

A. This section includes wires, cables, and connectors for power, lighting, signal, control, and related systems rated 600 volts and less.

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical wire and cable products of types, sizes, and ratings required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 3 years of successful installation experience with projects utilizing electrical wiring and cabling work similar to that required for this project.

C. Conform to applicable code regulations regarding toxicity of combustion products of insulating materials.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Design Data: Indicate voltage drop and ampacity calculations for aluminum conductors substituted for copper conductors. Include proposed modifications to raceways, boxes, wiring gutters, enclosures, etc. to accommodate substituted conductors.

C. Record Documents: Record actual installed circuiting arrangements for panel feeders and underground circuits.

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Deliver wire and cable properly packaged in factory- fabricated type containers, or wound on NEMA-specified type wire and cable reels.

B. Store wire and cable in clean dry space in original containers. Protect products from weather, damaging fumes, construction debris and traffic.

C. Handle wire and cable carefully to avoid abrading, puncturing and tearing wire and cable insulation and sheathing. Ensure that dielectric resistance integrity of wires/cables is maintained.

PART 2 - PRODUCTS

2.1 APPLICATIONS

A. General: Provide wire and cable suitable for the temperature, conditions, and location where installed. Wire shall be single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.
B. Dry and Concealed Interior Locations

1. Provide single conductor building wire in suitable raceway system.
2. Metal Clad cable (MC), Refer to Additional Requirements Paragraph, this section.

C. Dry and Exposed Interior Locations

1. Provide single conductor building wire in suitable raceway system.

D. Damp or Wet Interior Locations

1. Provide single conductor building wire in suitable raceway system.

E. Cable types that will NOT be permitted are listed as follows:

1. Armored Cable assemblies (AC)
2. Flat Cable assemblies (FC / FCC)
3. Integrated Gas Spacer cables assemblies (IGS)
4. Medium Voltage cable assemblies (MV)
5. Mineral-Insulated, metal sheathed cable assemblies (MI)
6. Nonmetallic-Sheathed cable assemblies (NM / NMC / NMS)
7. Service-Entrance cable assemblies (SE / USE)
8. Underground Feeder and branch-circuit cable assemblies (UF)

2.2 CONDUCTOR AND CABLE REQUIREMENTS

A. General Requirements

1. Provide products listed, classified, and labeled as suitable for the purpose intended.
2. Provide copper conductors.
3. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B 787M unless otherwise indicated.
4. Tinned Copper Conductors: Comply with ASTM B33.

B. Single Conductor Building Wire

1. Description: Single conductor insulated wire.
2. Conductor Stranding:
 b. Size 8 AWG and Larger: Stranded.
3. Insulation: Type THHN/THWN or THHN/THWN-2.
4. Conductor: Copper.
5. Insulation Voltage Rating: 600 volt, 75 degrees C.

C. Metal Clad cable (MC)

1. Description: NFPA 70, Type MC cable listed and labeled as complying with UL 1569, aluminum interlocked metal type covering with integral, full-size equipment grounding conductor. Fitting shall be double grip saddle and locking nut.
2. Conductor Stranding:
 a. Size 10 AWG and Smaller: Stranded.
b. Size 8 AWG and Larger: Stranded.
3. Insulation: Type THHN, THHN/THWN, or THHN/THWN-2
4. Conductor: Copper.
5. Insulation Voltage Rating: 600 volt, 75 degrees C.

D. Portable Equipment Power Cords
1. Use for flexible pendant leads to luminaires, outlets, and equipment where indicated and in compliance with codes.
 a. Type SO: Sizes 12 AWG through 2 AWG, copper conductors with 600 volt thermoset insulation.
 b. Type G-GC: Sizes 1 AWG through 500 KCMIL, copper conductors with 600/2000 volt, 90 degrees C, ethylene-propylene insulation

2.3 CONNECTORS:
A. Description: Provide UL-type factory-fabricated, solderless metal connectors of sizes, ampacity ratings, materials, types and classes for applications and for services indicated. Use connectors with temperatures equal to or greater than those of the wires upon which used.
B. Provide 2-hole compression lugs for all power feeder, neutral, and grounding connections when installed on bus bars. (Including phase, neutral and grounding conductors).
C. Provide connectors that are designed to accept stranded conductors where stranded conductors are used.

PART 3 - EXECUTION
3.1 INSTALLATION OF WIRES AND CABLES:
A. General: Install electrical cables, wires and connectors in compliance with applicable requirements of NEC, NEMA, UL, and NECA's "Standard of Installation", and in accordance with recognized industry practices.
B. Coordinate wire/cable installation work, including electrical raceway and equipment connection work, with other work.
C. Pull conductors simultaneously where more than one is being installed in same raceway. Use pulling compound or lubricant, where necessary; compound used must not deteriorate conductor or insulation.
D. Use pulling means including, fish tape, cable, rope and basket weave wire/cable grips which will not damage cables or raceway. Do not use rope hitches for pulling attachment to wire or cable.
E. Keep conductor splices to minimum. Splice only in accessible junction boxes. No splices are allowed in feeder, control or fire alarm wiring. Connect un-spliced wire to numbered terminal strips at each end.
F. Install splices and taps which possess equivalent or better mechanical strength and insulation ratings than conductors being spliced.
G. Use splice and tap connectors which are compatible with conductor material.

H. Tighten electrical connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Std. 486A for copper.

I. Support cables above accessible ceilings. Independent from the ceiling suspension system to support cables from structure, do not rest on ceiling tiles.

J. Provide adequate length of conductors within electrical enclosures and train the conductors to terminal points with no excess. Bundle multiple conductors, with conductors larger than No. 10 AWG cabled to individual circuits. Make terminations so there is no bare conductor at the terminal.

K. Use solderless pressure connectors with insulating covers for copper wire splices and taps, 8 AWG and larger. For 10 AWG and smaller, use insulated screw on type spring wire connectors with plastic caps, push on type are not acceptable.

L. Use copper compression connectors for copper wire splices and taps, 1/0 AWG and larger. Tape uninsulated conductors and connectors with electrical tape to 150 percent of the insulation value of the conductor.

M. Make splices, taps and terminations to carry full ampacity of conductors without perceptible temperature rise.

N. Thoroughly tape the ends of spare conductors in boxes and cabinets.

O. Install exposed cable, parallel and perpendicular to surfaces, or exposed structural members, and follow surface contours, where possible.

P. Make all ground, neutral and line connections to receptacle and wiring device terminals as recommended by manufacturer. Provide ground jumper from outlet box to individual ground terminal of devices.

Q. Branch circuits whose length from panel to first outlet exceeds 75 feet for 120 volt circuits or 175 feet for 277 volt circuit shall be #10 or larger.

R. Parallel conductors shall be cut to the same length.

S. All splices in control panels, terminal junction boxes, low voltage control circuits, fire alarm, etc., conductors shall be on numbered terminal strips.

T. Where conduit is not required, plenum rated cable shall be provided in ceiling, floor or other air plenum spaces.

U. Provide wire training, lacing, labeling, and terminal blocks as required in panelboards and all control cabinets including, but not limited to, lighting and fire alarm cabinets. All wiring shall be installed neat and be labeled to match wiring diagrams, control devices, etc.

1. Make temporary connections to panelboard devices with sufficient slack conductor to facilitate reconnections required for balancing loads between phases.
V. Color coding of switch legs, travelers, etc. shall be different and distinct from phase and neutral conductors. Where systems utilize two (2) different voltages, the color coding of switch legs, travelers, etc. shall be different and distinct for each voltage system.

3.2 ADDITIONAL REQUIREMENTS FOR MC CABLE INSTALLATIONS

A. The location of system components, including cable routing shown on the plans, is approximate. Use good judgment in their placement to eliminate all interference with ducts, piping, etc.

B. All cable routing shall be done in a neat and workmanlike manner, consistent with recognized good practice and in accordance with the manufacturer’s instructions.

C. Route the cables along the grid system. Do not route cables diagonally or in any way which restricts removal of lay-in ceiling material.

D. Support cable on ceiling wires adjacent to each luminaire and at four foot intervals using clamp supports manufactured specifically for that purpose.

E. Maximum of 6 feet unsupported length for connecting luminaires in accessible ceilings to the local junction box.

F. Maximum of 6 feet unsupported length for connecting luminaires in non-accessible ceilings to the local junction box.

G. May be used in stud walls and casework for horizontal branch circuit runs between devices.

H. For vertical branch circuit drops from a local junction box in each room above an accessible ceiling to the direct or single device in a stud wall or casework; including under counter lighting.

I. May not be used for branch circuit home runs, feeders, motor feeder circuits or in emergency systems.

J. Branch circuit conductors shall match color coding schedule within this specification section.

3.3 FIELD QUALITY CONTROL:

A. Test installed wires and cables with 1000 VDC megohm meter to determine insulation resistance levels to ensure requirements are fulfilled. Test shall be made on all feeders. The megger values obtained shall be compared to the minimum values listed in NETA. All phase conductors and cables shall be meggered after installation, and prior to termination.

B. Prior to energization, test wires and cables for electrical continuity and for short-circuits.

3.4 COLOR CODING SCHEDULE:

A. Color code secondary service, feeder, and branch circuit conductors as follows:

- 120/208 Volts
- Phase
- 277/480 Volts
Black A Brown
Red B Orange
Blue C Yellow
White Neutral Gray
Green Ground Green

B. Conductors shall be solid color for entire length.

C. If solid color conductor insulation is not available and specific acceptance is given by the engineer for use of black conductor insulation, provide the following:

1. Conductors 6 AWG and smaller shall be solid color for the entire length.
2. Conductors 4 AWG and larger shall have either solid color insulation as specified above for the entire length or be black with color coding at each termination and in each box or enclosure. For a distance of 6 inches use half-lapped 3/4 inch plastic tape in the above specified color. Do not cover cable identification markings. Adjust tape locations to prevent covering of markings.

END OF SECTION 260519
SECTION 260526 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes solid grounding of electrical systems and equipment. It includes basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other sections of these Specifications.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Provide manufacturer’s catalog information showing dimensions and materials, for ground rods, connectors and connection materials, and grounding fittings.

C. Field Quality Control Test Reports: Submit record of testing as described below. Refer to Section 26 05 00 – Common Work Results for additional requirements.

D. Record Documents: Record actual installed circuiting arrangements. Indicate layout of ground rings, location of system grounding electrode connection, routing of grounding electrode conductors, also include diagrams for circuits and equipment grounding connections.

1.3 QUALITY ASSURANCE:

A. Listing and Labeling: Provide products specified in this Section that are listed and labeled. The terms "listed" and "labeled" shall be defined as they are in the National Electrical Code, Article 100.

B. Manufacturer's Qualifications: Firms regularly engaged in manufacture of grounding and bonding products, of types, and ratings required, and ancillary grounding materials, including stranded cable, copper braid and bus, grounding electrodes and plate electrodes, and bonding jumpers whose products have been in satisfactory use in similar service for not less than 5 years.

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING PRODUCTS:

A. Products: Of types indicated and of sizes and ratings to comply with NEC. Where types, sizes, ratings, and quantities indicated are in excess of NEC requirements, the more stringent requirements and the greater size, rating, and quantity indications govern.

B. Conductor Materials: Copper.

2.2 WIRE AND CABLE CONDUCTORS:

A. General: Comply with Division 26 Section on Conductors and Cables. Conform to NEC, except as otherwise indicated, for conductor properties, including stranding.
B. Equipment Grounding Conductor: Green insulated.
C. Grounding Electrode Conductor: Stranded cable.
D. Bare Copper Conductors: Conform to the following:
 1. Solid Conductors: ASTM B-3
 2. Assembly of Stranded Conductors: ASTM B-8
 3. Tinned Conductors: ASTM B-33

2.3 MISCELLANEOUS CONDUCTORS:
A. Ground Bus: Bare annealed copper bars of rectangular cross section
B. Braided Bonding Jumpers: Copper tape, braided No. 30 gage bare copper wire, terminated with copper ferrules
C. Bonding Strap Conductor/Connectors: Soft copper, 0.05 inch thick and 2 inches wide, except as indicated

2.4 CONNECTOR PRODUCTS:
A. General: Listed and labeled as grounding connectors for the materials used
B. Pressure Connectors: High-conductivity-plated units
C. Bolted Clamps: Heavy-duty units listed for the application
D. Exothermic Welded Connections: Provided in kit form and selected for the specific types, sizes, and combinations of conductors and other items to be connected.

2.5 GROUNDING ELECTRODES:
A. Ground Rods: Copper-clad steel with high-strength steel core and electrolytic-grade copper outer sheath, molten welded to core.
 1. Size: 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATION:
A. Equipment Grounding Conductor Application: Comply with NEC for sizes and quantities of equipment grounding conductors, except where larger sizes or more conductors are indicated.
 1. Install separate insulated equipment grounding conductors with circuit conductors for all feeders and branch circuits, in addition to those locations where required by Code:
B. Underground Conductors: Bare, tinned, stranded copper except as otherwise indicated.
C. Signal and Communications: For data, telephone, alarm, and communication systems, provide a #6 AWG minimum green insulated copper conductor in raceway from the grounding electrode system to each terminal cabinet or central equipment location.

D. All systems shall be grounded in accordance with the NEC.

3.2 INSTALLATION:

A. General: Ground electrical systems and equipment in accordance with NEC requirements except where the Drawings or Specifications exceed NEC requirements. Connect together system neutral, service equipment enclosures, exposed noncurrent carrying metal parts of electrical equipment, metal raceway systems, grounding conductor in raceways and cables, receptacle ground connectors, and plumbing systems.

B. Electrical Room Ground Bus: Size and configurations as indicated in electrical plans. Space 1 inch from wall and support from wall 6 inches above finished floor, except as otherwise indicated.

C. Ground Rods: Locate a minimum of two-rod lengths from each other and at least the same distance from any other grounding electrode. Interconnect ground rods with bare conductors buried at least 24 inches below grade. Connect bare-cable ground conductors to ground rods by means of exothermic welds except as otherwise indicated. Make these connections without damaging the copper coating or exposing the steel. Drive rods until tops are 6 inches below finished floor or final grade except as otherwise indicated.

D. Braided-Type Bonding Jumpers: Install to connect ground clamps on water meter piping to bypass water meters electrically. Use elsewhere for flexible bonding and grounding connections.

E. Route grounding conductors along the shortest and straightest paths possible without obstructing access or placing conductors where they may be subjected to strain, impact, or damage, except as indicated.

F. Labeling: Provide a phenolic tag for all grounding electrode conductors as described in section on Electrical Identification.

G. Where grounding conductors, grounding electrode conductors, or bonding conductors are non-exposed, identify each with a 6-inch band of green tape at each end and at 10 foot intervals. When run in conduits, provide color banding on conduit per section on Electrical Identification.

3.3 CONNECTIONS:

A. General: Make connections in such a manner as to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to assure high conductivity and make contact points closer in order of galvanic series.
2. Make connections with clean bare metal at points of contact.
3. Coat and seal connections involving dissimilar metals with inert material such as red lead paint to prevent future penetration of moisture to contact surfaces.
B. Exothermic Welded Connections: Use for connections to structural steel and for underground connections except those at test wells. Install at connections to ground rods and plate electrodes. Comply with manufacturer's written recommendations. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Terminate insulated equipment grounding conductors for feeders and branch circuits with pressure-type grounding lugs. Where metallic raceways terminate at metallic housings without mechanical and electrical connection to the housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to the ground bus in the housing. Bond electrically non-continuous conduits at both entrances and exits with grounding bushings and bare grounding conductors. Terminate each conductor on an individual ground lug terminal.

D. Tighten grounding and bonding connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values for connectors and bolts. Where manufacturer's torquing requirements are not indicated, tighten connections to comply with torque tightening values specified in UL 486A.

E. Compression-Type Connections: Use hydraulic compression tools to provide the correct circumferential pressure for compression connectors. Use tools and dies recommended by the manufacturer of the connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on the ground conductor.

F. Moisture Protection: Where insulated ground conductors are connected to ground rods or ground buses, insulate the entire area of the connection and seal against moisture penetration of the insulation and cable.

3.4 FIELD QUALITY CONTROL:

A. Provide all test results to Engineer in Substantial Completion Submittals, via Architect, prior to scheduling Substantial Completion observations. Test results shall be tabulated to show name of tested device, measured value, expected values, acceptable standard deviation, and test conditions, as well as any miscellaneous variables that may be applicable to test being performed.

B. Upon completion of installation of electrical grounding and bonding systems, test ground resistance with ground resistance tester. Where tests show resistance-to-ground is over 5 ohms, take appropriate action to reduce resistance to 5 ohms, or less, by driving additional ground rods; then retest to demonstrate compliance.

C. Ground Resistance Test:

1. Grounding electrode resistance testing shall be accomplished with a ground resistance direct-reading single test meter utilizing the fall-of-potential method and two reference electrodes. Perform test prior to interconnection to other grounding systems. Orient the ground electrode to be tested and the two reference electrodes in a straight line spaced fifty (50) feet apart. Drive the two reference electrodes five (5) feet deep.

D. Correct Deficiencies, Retest and Report:
1. Correct unsatisfactory conditions and retest to demonstrate compliance; replace conductors, units and rods as required to bring system into compliance.

2. Prepare a written report and show temperature, humidity and condition of soil at time of tests. Report shall be certified by testing agency that identifies components checked and describes results. Include notation of deficiencies detected, remedial action taken, and observations and test results after remedial action.

3.5 CLEANING AND ADJUSTING:

A. Restore surface features at areas disturbed by excavation and reestablish original grades except as otherwise indicated. Where sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other Work to their original condition. Include necessary top-soiling, fertilizing, liming, seeding, sodding, sprigging, or mulching. Restore vegetation and disturbed paving to original condition.

END OF SECTION 260526
PAGE INTENTIONALLY LEFT BLANK
SECTION 260529 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes secure support from the building structure for electrical items by means of hangers, supports, anchors, sleeves, inserts, seals, and associated fastenings.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Shop Drawings: Contractor shall indicate details of fabricated products and materials.

C. Design Data: Indicate details and engineering analysis for any suspended transformers, cable trays, and trapeze hangers for multiple conduit runs.

PART 2 - PRODUCTS

2.1 COATINGS:

A. Coating: Supports, support hardware, and fasteners shall be protected with zinc coating or with treatment of equivalent corrosion resistance using approved alternative treatment, finish, or inherent material characteristic. Products for use outdoors shall be hot-dip galvanized.

2.2 MANUFACTURED SUPPORTING DEVICES:

A. Raceway Supports: Clevis hangers, riser clamps, conduit straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring steel clamps.

B. Fasteners: Types, materials, and construction features as follows:

1. Expansion Anchors: Carbon steel wedge or sleeve type.
2. Toggle Bolts: All steel springhead type.

C. Conduit Sealing Bushings: Factory-fabricated watertight conduit sealing bushing assemblies suitable for sealing around conduit, or tubing passing through concrete floors and walls. Construct seals with steel sleeve, malleable iron body, neoprene sealing grommets or rings, metal pressure rings, pressure clamps, and cap screws.

D. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for non-armored electrical cables in riser conduits. Provide plugs with number and size of conductor gripping holes as required to suit individual risers. Construct body of malleable-iron casting with hot-dip galvanized finish.
E. U-Channel Systems: 12-gage steel channels, with 9/16 inch-diameter holes, at a minimum of 8 inches on center, in top surface. Provide fittings and accessories that mate and match with U-channel and are of the same manufacture.

F. Supports: Provide supporting devices of types, sizes and materials indicated; and having the following construction features:

 1. One-Hole Conduit Straps: For supporting 1 inch and smaller rigid metal conduit; galvanized steel.
 2. Two-Hole Conduit Straps: For supporting 1 inch and larger rigid metal conduit, galvanized steel; 3/4 inch strap width; and 2-1/8 inch between center of screw holes.

2.3 FABRICATED SUPPORTING DEVICES:

 A. General: Shop- or field-fabricated supports or manufactured supports assembled from U-channel components.

 B. Steel Brackets: Fabricated of angles, channels, and other standard structural shapes. Connect with welds and machine bolts to form rigid supports.

 C. Pipe Sleeves: Provide pipe sleeves of one of either; Steel Pipe (fabricated from Schedule 40 galvanized steel pipe), or metallic conduit (EMT, IMC, or RMC).

2.4 FIRE SEALS:

 A. Material: Fire stopping material shall be asbestos free, 100 percent intumescent, have code approval under BOCA, ICBO, SSBC, NFPA 101, NFPA 70, and be capable of maintaining an effective barrier against flame and gases in compliance with the following requirements.

 B. Flame Spread: 25 or less, ASTM E84

 C. Fire Resistance and Hose Stream Tests: Fire stopping materials shall be rated "F" and "T" in accordance with ASTM E 814 or UL 1479. Rating periods shall conform to the following:

PART 3 - EXECUTION

3.1 INSTALLATION:

 A. Install supporting devices to fasten electrical components securely and permanently in accordance with NEC requirements.

 B. Coordinate with the building structural system and with other electrical installation.

 C. Junction Box Supports: Comply with the NEC and the following requirement:

 1. Use 1/4 inch all-thread rod from structure to support junction boxes.

 D. Raceway Supports: Comply with the NEC and the following requirements:

 1. Conform to manufacturer's recommendations for selection and installation of supports.
2. Strength of each support shall be adequate to carry present and future load multiplied by a safety factor of at least four. Where this determination results in a safety allowance of less than 200 lbs., provide additional strength until there is a minimum of 200 lbs. safety allowance in the strength of each support.

3. Install individual and multiple (trapeze) raceway hangers and riser clamps as necessary to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assembly and for securing hanger rods and conduits.

4. Use #9 ceiling wire to support individual conduits up to 3/4 inch with spring steel fasteners. Use of ceiling support wires is unacceptable.

5. Support parallel runs of horizontal raceways together on trapeze-type hangers. Use 3/8 inch diameter or larger threaded steel rods for support.

6. Support individual horizontal raceways by separate pipe hangers. Spring steel fasteners may be used in lieu of hangers only for 1-1/2 inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings only. For hanger rods with spring steel fasteners, use 1/4 inch-diameter or larger threaded steel. Use spring steel fasteners that are specifically designed for supporting single conduits or tubing. For hanger rods supporting 1-1/2 inch or larger conduits provide 3/8 inch minimum threaded steel rods with pipe hangers.

7. Space supports for raceways in accordance with NEC. When four (4) or more 2 inch conduits are installed in a trapeze system, supports shall be spaced 5 feet O.C.

8. In all runs, arrange support so the load produced by the weight of the raceway and the enclosed conductors is carried entirely by the conduit supports with no weight load on raceway terminals.

9. Threaded rod supports to have bottoms cut off at a maximum length equal to rod diameter below bottom nut.

E. Conductor or Cable Supports: Comply with the NEC and the following requirements:

1. Support individual conductors or cables by separate clamps with rubber or plastic grommet, fasten using a non-metallic bolt and nut, and secure clamps to channel supports anchored to structure (multiple clamps may be secured to a single channel support). Individual conductors or cables may be served utilizing a vinyl or fiberglass clamp which shall be anchored to the structure.

2. Install simultaneously with installation of conductors.

3. MC Cable shall be supported by UL listed clip or clamp. Cable tie support is not acceptable.

F. Miscellaneous Supports: Support miscellaneous electrical components separately and as required to produce the same structural safety factors as specified for raceway supports. Install metal channel racks for mounting cabinets, panelboards, disconnects, control enclosures, pull boxes, junction boxes, transformers, and other devices.

G. In overhead spaces, support metal boxes directly from the building structure via 1/4 inch minimum all-thread or by bar hangers. Where bar hangers are used, attach the bar to raceways on opposite sides of the box and support the raceway with an approved type of fastener not more than 24 inches from the box. Supporting metal boxes utilizing ceiling type wire is not acceptable.

H. Sleeves: Install in walls and all other fire-rated partitions for cable installations as needed. Apply UL-listed fire stopping sealant in gaps between sleeves and cables in accordance with "Fire Resistant Joint Sealers" requirement of Division 07 Section "Joint Sealers." See Architectural plans for location and extent of fire rated assemblies.
I. Fastening: Unless otherwise indicated, fasten electrical items and their supporting hardware securely to the building structure, including but not limited to conduits, raceways, cables, cable trays, busways, cabinets, panelboards, transformers, boxes, disconnect switches, and control components in accordance with the following:

1. Fasten by means of wood screws or screw-type nails on wood, toggle bolts on hollow masonry units, concrete inserts or expansion bolts on concrete or solid masonry, and machine screws, welded threaded studs, or spring-tension clamps on steel. Threaded studs driven by a powder charge and provided with lock washers and nuts may be used instead of expansion bolts and machine or wood screws, where authorized by the Owner and structural engineer. Do not weld conduit, pipe straps, or items other than threaded studs to steel structures. In partitions of light steel construction, use sheet metal screws.

2. Holes cut to depth of more than 1-1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete shall not cut the main reinforcing bars. Fill holes that are not used.

3. Ensure that the load applied to any fastener does not exceed 25 percent of the proof test load. Use vibration- and shock-resistant fasteners for attachments to concrete slabs.

J. Communication and Telephone Cable Supports: Refer to Division 27.

3.2 PERSONNEL PROTECTION:

A. Where U-channel systems, angles, brackets or other standard structural metal shapes are readily accessible and exposed to personnel, provide plastic or rubber end caps.

B. Where threaded rod supports are readily accessible and exposed to personnel, provide plastic or rubber end caps.

3.3 FIRE STOPPING LOCATIONS:

A. Preparation:

1. Coordination: Coordinate the work with other trades. Fire stopping materials at penetrations of insulated pipes and ducts can be applied after insulation is in place. If insulation is composed of combustible material, the thickness of fire stopping materials must be equivalent to that of the insulation. If the insulation is composed of non-combustible material, it may be considered as part of the penetrating item.

2. Surface Preparation: Surface Preparation to be in contact with fire stopping materials shall be free of dirt, grease, oil, loose material or other substances that may affect proper fitting or the required fire resistance.

B. Installation: Install fire stopping materials in accordance with the manufacturer's instructions.

C. Cleaning: After completion of fire stopping work in any area, equipment shall be reviewed and walls, ceilings and all other surfaces shall be cleaned of deposits of firestop materials.

END OF SECTION 260529
SECTION 260533 – RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of raceway work is indicated by drawings and schedules. Provide complete conduit systems for all conductors unless otherwise specified.

B. Types of raceways specified in this section include the following:

1. Flexible Metallic Tubing (FMT)
2. Liquidtight Flexible Metal Conduit (LFMC)
3. Electrical Metallic Tubing (EMT)
4. Surface Raceway

C. The following raceway systems are either specified in other sections or not anticipated to be provided by this Contractor.

1. High Density Polyethylene (HDPE)
2. Nonmetallic Underground Conduit with Conductors (NUCC)
3. Reinforced Thermosetting Resin Conduit (RTRC)
4. Liquidtight Flexible Nonmetallic Conduit (LFNC)
5. Flexible Metal Conduit (FMC)
6. Electrical Nonmetallic Tubing (ENT)
7. Rigid Polyvinyl Chloride (PVC)
8. Intermediate Metallic Conduit (IMC)
9. Rigid Metal Conduit (RMC)
10. Busways and/or Cablebus
11. Cellular Concrete Floor Raceways
12. Underfloor Raceways
13. Cable Trays
14. Auxiliary Gutters / Wireways

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of raceway systems of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 3 years of successful installation experience on projects with electrical raceway work similar to that required for this project.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Record Documents: Record actual installed circuiting arrangements and routing for panel feeders and underground circuits.
PART 2 - PRODUCTS

2.1 CONDUIT AND TUBING:

A. General: Aluminum, Brass, and Stainless Steel tubing are not allowed unless specifically noted otherwise and/or for specialty systems such as use in corrosive or special condition environments. Provide galvanizing as indicated below. All fittings shall comply with NEMA FB 1.

B. Flexible Metallic Conduits (FMC)

1. Conduit: Continuous spiral wound, interlocked, zinc-coated steel, approved for grounding.
2. Fittings: Zinc coated, malleable iron. Straight connector shall be one-piece body, female end with clamp and deep slotted machine screw for securing conduit, and threaded male end provided with a locknut. Angle connectors shall be two piece body with removable upper section, female end with clamp and deep slotted machine screw for securing conduit, and threaded male end provided with a locknut. All fittings shall be terminated with threaded bushings having nylon insulated throats.

C. Liquid-Tight Flexible Metal Conduit (LFMC)

1. Conduit: Continuous spiral wound, interlocked zinc-coated steel with polyvinyl chloride (PVC) jacket, approved for grounding.
2. Fittings: Zinc coated malleable iron. Straight and angle connectors shall be the same as used with flexible metal conduit but shall be provided with a compression type steel ferrule and neoprene gasket sealing rings.

D. Electrical Metallic Tubing (EMT)

1. Conduit: Thin-wall steel tubing, unthreaded, with zinc electroplating.
2. Fittings: Steel compression fittings for all applications. Bushings shall be threaded and have nylon insulated throat or nylon bushing.
3. Rain-tight Fittings: Steel compression fittings for rain-tight and concrete-tight applications. Steel set-screw for all other connections. Set-screw quick fit type for 2-1/2 inches and larger may be used. Bushings shall be threaded and have nylon insulated throat or nylon bushing.

2.2 SURFACE RACEWAYS:

A. General: Sizes and channels as indicated. Provide fittings that match and mate with raceway. All circuits either factory or field installed shall have a separate neutral conductor. Verify color with Architect/Engineer prior to order.

1. Multi-outlet assembly, divided for power and communication, nominal 4-3/4" x 1-3/4" with (2), 2-3/8" compartments and flush, Snap-on cover. Install devices and circuits as indicated on the drawings.
2. Surface Metal Raceway: Galvanized steel with Snap-on cover. Finish in manufacturer’s standard prime coating suitable for field painting. Provide raceways of suitable size based on fill for circuits indicated on the drawings. Provide all necessary boxes, covers, extensions, fittings, etc. to form a complete assembly.
B. Boxes for Surface Raceways: Designed, manufactured and supplied by raceway manufacturer for use with specified raceway.

2.3 CONDUIT BODIES:
 A. General: Types, shapes and sizes, as required to suit individual applications and NEC requirements. Provide matching gasketed covers secured with corrosion-resistant screws.
 B. Metallic Conduit and Tubing: Use malleable iron conduit bodies. Use bodies with threaded hubs for threaded raceways and in hazardous locations.

2.4 CONDUIT SIZES:
 A. Conduit sizes shall be as shown on the drawings. If the conduit size is not given on the drawings, the conduit shall be sized in accordance with NEC based on the number of conductors enclosed plus parity sized equipment ground.

PART 3 - EXECUTION

3.1 INSPECTION:
 A. Examine areas and conditions under which raceways are to be installed, and substrate which will support raceways. Notify Contractor in writing of conditions detrimental to proper completion of the work. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 CONDUIT SCHEDULE:
 A. General: Unless otherwise indicated and where not otherwise restricted, use the conduit types indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use galvanized steel rigid metal conduit.
 B. Concealed Within Hollow Stud Walls: EMT.
 C. Concealed Above Accessible Ceilings: EMT.
 D. Interior, Damp or Wet Locations: EMT.
 E. Exposed Interior in utility areas or areas with open ceilings: EMT
 F. Connections to Vibrating Equipment: (Such as Transformers and Motors)
 1. Dry, Damp or Wet Locations: LFMC.
 2. Maximum Length: 6 feet unless otherwise indicated.
 G. Raceways in all other areas shall be EMT unless otherwise noted.
 H. Use FMC inside movable partition wireways, from junction boxes to devices and between devices in casework, from outlet boxes to recessed luminaires, and for "fishing" of existing walls.
I. Rework or extensions of existing conduit shall include the use of similar materials to the existing conduit type unless otherwise noted.

3.3 INSTALLATION OF CONDUITS:

A. General: Install electrical raceways in accordance with manufacturer's written installation instruction, applicable requirements of NEC, and as follows:

1. Conceal all conduits unless indicated otherwise, within finished walls, ceilings, and floors. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot water pipes. Install raceways level and square and at proper elevations.
2. Elevation of Raceway:
 a. Where horizontal raceway is installed near water and steam piping, route raceway above piping and as close to structure as possible and practical.
 b. Route raceway as close to structure as possible.
3. Complete installation of electrical raceways before starting installation of conductors within raceways.
4. Provide supports for raceways as specified elsewhere in Division 26.
5. Prevent foreign matter from entering raceways by using temporary closure protection.
6. Protect stub-ups from damage where conduits rise from floor slabs. Arrange so curved portion of bend is not visible above the finished slab.
7. Make bends and offsets so the inside diameter is not effectively reduced. Unless otherwise indicated, keep the legs of a bend in the same plane and the straight legs of offsets parallel.
8. Use raceway fittings that are types compatible with the associated raceway and suitable for the use and location. Install expansion fittings across all structural construction joints and expansion/deflection couplings across all structural expansion joints.
9. Run raceways parallel and perpendicular to building elements and other equipment with a minimum of bends in the shortest practical distance considering the type of building construction and obstructions except as otherwise indicated.
10. Install exposed raceways parallel and perpendicular to nearby surfaces or structural members and follow the surface contours as much as practical.
11. Install vertical feeder conduits in exterior walls, core walls, or chase spaces. Do not install in interior wall partition areas.
12. Run exposed and parallel raceways together. Make bends in parallel runs from the same center line so that the bends are parallel. Factory elbows may be used only where they can be installed parallel. In other cases provide field bends for parallel raceways.
13. Make raceway joints tight. Where joints cannot be made tight, use bonding jumpers to provide electrical continuity of the raceway system. Make raceway terminations tight.
14. Where terminations are subject to vibration, use bonding bushings or wedges to assure electrical continuity. Where subject to vibration or dampness, use insulating bushings to protect conductors. Joints in non-metallic conduits shall be made with solvent cement in strict accordance with manufacturer’s recommendations.
15. Tighten set screws of thread less fittings with suitable tool.
16. Terminations: Where raceways are terminated with locknuts and bushings, align the raceway to enter squarely and install the locknuts with dished part against the
box. RMC and IMC shall be secured with double locknuts and an insulated metallic bushing. EMT shall be secured with one locknut and shall have nylon insulated throats or threaded nylon bushings from 1/2" to 1". 1-1/4" and above shall be metal with nylon insulated throats. Use grounding type bushings for feeder conduits at switchboards, panelboards, pull boxes, transformers, motor control centers, VFD's, etc.

17. Where terminating in threaded hubs, screw the raceway or fitting tight into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align the raceway so the coupling is square to the box, and tighten the chase nipple so no threads are exposed.

18. Provide nylon pull string with printed footage indicators having not less than 200 pounds tensile strength. Leave not less than 12 inches of slack at each end of the pull string. Identify with tags at each end the origin and destination of each empty conduit and indicate same on all empty or spare conduits on the as-built drawings.

19. Telephone and Signal System Raceways: Refer to Division 27 requirements.

20. Flexible Connections: Use short length (maximum of 6 feet) of flexible conduit for recessed and semi-recessed luminaires, for equipment subject to vibration, noise transmission, or movement; and for all motors. Use liquid-tight flexible conduit in wet locations. Install separate ground conductor across flexible connections. PVC externally coated rigid steel conduit: Patch all nicks and scrapes in PVC coating after installing conduit.

21. Where conduits are to be installed through structural framing members, the Contractor shall provide sleeves. The Architect/Engineer's written approval must be obtained prior to cutting, notching or drilling of structural framing members.

22. Ream the ends of all cut and/or threaded conduit. Ends shall be cut square.

23. Use of running threads for rigid or intermediate metallic conduit are not permitted. When threaded couplings cannot be used, provide 3 piece union or solid coupling.

24. Conduits shall not cross pipe shafts or ventilation duct openings. Where conduits must penetrate air-tight spaces or plenums, seal around the conduit with a mastic acceptable to the Architect/Engineer.

25. Install an insulated ground conductor in all conduits.

26. Where individual conduits penetrate existing fire-rated walls and floors, pack void around conduit with fire rated insulation and seal opening around conduit with UL listed foamed silicone elastomer compound. Where conduits penetrate exterior walls, new floors, or roof, provide pipe sleeve one size larger than conduit, pack void around conduit with fire rated insulation, and seal opening around conduit with UL listed foam silicone elastomer compound.

27. Where conduit sleeves penetrate fire rated floors or walls for installation of system cables, AC or MC cables, or modular wiring cables pack void around cables or empty sleeve with fire rated insulation and fill ends with fire-resistant compound. Seal opening around sleeve with UL listed foam silicone elastomer compound.

28. Provide separate raceway systems for each of the following:
 a. Lighting
 b. Power Distribution
 c. Communications and Data
 d. Fire Alarm
 e. Temperature Control

29. Paint new exposed conduits to match existing exposed conduits where installed in areas with existing painted conduits or where otherwise indicated.
B. Install labeling as required in Division 26 section - "Electrical Identification".

3.4 INSTALLATION OF SURFACE RACEWAYS AND WIREWAYS:

A. Surface Raceways and Wireways: Mechanically assemble metal enclosures and raceways to form continuous electrical conductor and connect to electrical boxes, fittings and cabinets as to provide effective electrical continuity and rigid mechanical assembly.

1. Where practicable, avoid use of dissimilar metals throughout system to eliminate possibility of electrolysis. Where dissimilar metals are in contact, coat all surfaces with corrosion inhibiting compound before assembling.
2. Install expansion fittings in all raceways wherever structural expansion joints are crossed.
3. Make changes in direction of raceway run with proper fittings, supplied by raceway manufacturer. Field bends of raceway sections are not permitted.
4. Properly support and anchor raceways for their entire length by structural materials. Raceways are not to span any space unsupported.
5. Use boxes as supplied by raceway manufacturer wherever junction, pull or device boxes are required. Standard electrical “handy” boxes, etc., are not permitted for use with surface raceway installations.
6. Install an insulated grounding conductor in all wireways and surface raceways. Bond grounding conductor to all wireways and surface raceways.
7. Paint new exposed surface metal raceway to match adjacent surfaces where raceway is installed in finished areas such as lobbies, corridors, and normally occupied spaces.
8. Surface raceways and wireways are acceptable only where specifically indicated on the drawings. The proposed use of surface raceways and wireways shall be submitted for review by the Engineer prior to installation.
9. Common wireways are not acceptable for convergence of multiple circuits unless specifically indicated on the drawings. The proposed use of a common wireway shall be submitted for review by the Engineer prior to installation.
10. The proposed use of wireways above or below panelboards, switchboards, motor control centers, and other electrical equipment shall be submitted along with a layout drawing for review by the Engineer prior to installation.

3.5 ADJUSTING AND CLEANING:

A. Upon completion of installation of raceways, inspect interiors of raceways; clear all blockages and remove burrs, dirt and construction debris.

END OF SECTION 260533
SECTION 260534 – CABINETS, BOXES, AND FITTINGS

PART 1 - GENERAL

1.1 SUMMARY:

A. This section includes cabinets, boxes, and fittings for electrical installations and certain types of electrical fittings not covered in other sections. Types of products specified in this section include:

1. Outlet and device boxes
2. Pull and junction boxes
3. Cabinets
4. Hinged door enclosures for Control Boxes

B. Conduit-body-type electrical enclosures and wiring fittings are specified in the Division 26 Section on Raceways.

1.2 DEFINITIONS:

A. Cabinets: An enclosure designed either for surface or for flush mounting and having a frame, or trim in which a door or doors may be mounted.

B. Device Box: An outlet box designed to house a receptacle device or a wiring box designed to house a switch.

C. Enclosure: A box, case, cabinet, or housing for electrical wiring or components.

D. Hinged Door Enclosure: An enclosure designed for surface mounting and having swinging doors or covers secured directly to and telescoping with the walls of the box.

E. Outlet Box: A wiring enclosure where current is taken from a wiring system to supply utilization equipment.

F. Wiring Box: An enclosure designed to provide access to wiring systems or for the mounting of indicating devices or switches for controlling electrical circuits.

1.3 SUBMITTALS:

A. See Section 2605 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Provide manufacturer’s catalog information showing dimensions, materials, colors, and configurations for any control enclosures.

C. Shop Drawings: Provide computer generated drawings floor boxes and boxes, enclosures, and cabinets that are to be shop fabricated (non-stock items). For shop fabricated boxes, show accurately scaled views and spatial relationships to adjacent equipment as well as field wiring. Show box types, dimensions, and finishes. Control panels shall include, but not be limited to; lighting and specialized fan.
PART 2 - PRODUCTS

2.1 CABINETS, BOXES, AND FITTINGS, GENERAL:

A. Electrical Cabinets, Boxes, and Fittings: Of indicated types, sizes, and NEMA enclosure classes. Where not indicated, provide units of types, sizes, and classes appropriate for the use and location. Provide all items complete with covers and accessories required for the intended use. Provide gaskets for units in damp or wet locations.

2.2 MATERIALS AND FINISHES:

A. Sheet Steel: Flat-rolled, code-gage, galvanized steel.

B. Fasteners for General Use: Corrosion resistant screws and hardware including cadmium and zinc plated items.

C. Exterior Finish: Gray baked enamel for items exposed in finished locations except as otherwise indicated.

D. Fittings for Boxes, Cabinets, and Enclosures: Conform to UL 514B. Malleable iron or zinc plated steel for conduit hubs, bushings and box connectors.

2.3 METAL OUTLET, DEVICE, AND SMALL WIRING BOXES:

A. General: Conform to UL 514A, "Metallic Outlet Boxes, Electrical," and UL 514B, "Fittings for Conduit and Outlet Boxes." Boxes shall be of type, shape, size, and depth to suit each location and application.

B. Steel Boxes: Conform to NEMA OS 1, "Sheet Steel Outlet Boxes, Device Boxes, Covers, and Box Supports." Boxes shall be sheet steel with stamped knockouts, threaded screw holes and accessories suitable for each location including mounting brackets and straps, cable clamps, exterior rings and fixture studs.

2.4 NONMETALLIC OUTLET, DEVICE, AND SMALL WIRING BOXES:

A. General: Conform to NEMA OS 2, "Nonmetallic Outlet Boxes, Device Boxes, Covers, and Box Supports" and UL 514C, "Nonmetallic Outlet Boxes, Flush Device Boxes and Covers." Boxes shall be molded PVC units of type, shape, size, and depth to suit location and application.

B. Boxes for Concealed Work: Mounting provisions and wiring entrances to suit installation conditions and wiring method used.

2.5 PULL AND JUNCTION BOXES:

A. General: Comply with UL 50, "Electrical Cabinets and Boxes", for boxes over 100 cubic inches volume. Boxes shall have screwed or bolted on covers of material same as box and shall be of size and shape to suit application.

B. Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing.
C. Hot-Dipped Galvanized Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing. Hot-dip galvanized after fabrication. Cover shall be gasketed.

2.6 CABINETS:

A. Comply with UL 50, "Electrical Cabinets and Boxes."

B. Construction: Sheet steel, NEMA 1 class except as otherwise indicated. Cabinet shall consist of a box and a front consisting of a one piece frame and a hinged door. Arrange door to close against a rabbet placed all around the inside edge of the frame, with a uniformly close fit between door and frame. Provide concealed fasteners, not over 24 inches apart, to hold fronts to cabinet boxes and provide for adjustment. Provide flush or concealed door hinges not over 24 inches apart and not over 6 inches from top and bottom of door. For flush cabinets, make the front approximately 3/4 inch larger than the box all around. For surface mounted cabinets make front same height and width as box.

C. Doors: Double doors for cabinets wider than 24 inches.

D. Locks: Combination spring catch and key lock, with all locks for cabinets of the same system keyed alike. Locks may be omitted on signal, power, and lighting cabinets located within wire closets and mechanical-electrical rooms. Locks shall be of a type to permit doors to latch closed without locking.

2.7 STEEL ENCLOSURES WITH HINGED DOORS:

A. Comply with UL 50, "Cabinets and Enclosures" and NEMA ICS 6, "Enclosures for Industrial Controls and Systems."

B. Construction: Sheet steel, 16 gage, minimum, with continuous welded seams. NEMA class as indicated; arranged for surface mounting.

C. Doors: Hinged directly to cabinet and removable, with approximately 3/4 inch flange around all edges, shaped to cover edge of box. Provide handle operated, key locking latch. Individual door width shall be no greater than 24 inches. Provide multiple doors where required.

D. Mounting Panel: Provide painted removable internal mounting panel for component installation.

E. Enclosure: NEMA 1 except as indicated. Where door gaskets are required, provide neoprene gasket attached with oil-resistant adhesive, and held in place with steel retaining strips. For all enclosures of class higher than NEMA 1, use appropriate weatherproof raceway entrances.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL:

A. Locations: Install items where indicated and where required to suit code requirements and installation conditions.

CABINETS, BOXES, AND FITTINGS
B. Cap unused knockout holes where blanks have been removed and plug unused conduit hubs.

C. Sizes shall be adequate to meet NEC volume requirements, but in no case smaller than sizes indicated.

D. Remove sharp edges where they may come in contact with wiring or personnel.

3.2 APPLICATIONS:

A. Cabinets: Flush mounted, NEMA enclosure type 1 except as otherwise indicated.

B. Hinged Door Enclosures Indoor: NEMA type 1 enclosure except as indicated.

C. Outlet Boxes and Fittings: Install outlet and device boxes and associated covers and fittings of materials and NEMA types suitable for each location and in conformance with the following requirements:

1. Interior Dry Locations: NEMA Type 1.
2. Locations Exposed to Weather or Dampness: NEMA type 3R.

D. Pull and Junction Boxes: Install pull and junction boxes of materials and NEMA types suitable for each location except as otherwise indicated.

3.3 INSTALLATION OF OUTLET BOXES:

A. Outlets at Windows and Doors: Locate close to window trim. For outlets indicated above doors center outlets above the door opening except as otherwise indicated.

B. Column and Pilaster Locations: Locate outlet boxes for switches and receptacles on columns or pilasters so the centers of the columns are clear for future installation of partitions.

C. Locations in Special Finish Materials: For outlet boxes for receptacles and switches mounted in desks or furniture cabinets or in glazed tile, concrete block, marble, brick, stone or wood walls, use rectangular shaped boxes with square corners and straight sides. Install such boxes without plaster rings. Saw cut all recesses for outlet boxes in exposed masonry walls.

D. Gasketed Boxes: At the following locations use malleable or cast metal, threaded hub type boxes with gasketed weatherproof covers:

1. Where exposed to moisture laden atmosphere.
2. At food preparation equipment within four ft. of steam connections.
3. Where indicated.

E. Mounting: Mount outlet boxes for switches with the long axis vertical or as indicated. Mount boxes for receptacles vertically, except above counter receptacles to be mounted horizontally. Three or more gang boxes shall be mounted with the long axis horizontal. Locate box covers or device plates so they will not span different types of building finishes either vertically or horizontally. Locate boxes for switches near doors on the side opposite the hinges and close to door trim, even though electrical floor plans may show them on hinge side. Provide far side box supports, for electrical switch
boxes installed on metal studs and provide stud to stud support for electrical receptacle boxes installed on metal studs.

F. Ceiling Outlets: For fixtures, where wiring is concealed, use outlet boxes 4 inches square by 1-1/2 inches deep, minimum.

G. Cover Plates for Surface Boxes: Use plates sized to box front without overlap.

H. Protect outlet boxes to prevent entrance of plaster, and debris. Thoroughly clean foreign material from boxes before conductors are installed.

I. Existing Outlet Boxes: Where extension rings are required to be installed, drill new mounting holes in the rings to align with the mounting holes on the existing boxes where existing holes are not aligned.

J. Back to back outlet boxes are not permitted. Separate boxes a minimum of 6 inches in standard walls and 24 inches in acoustical walls.

3.4 INSTALLATION OF PULL AND JUNCTION BOXES:

A. Box Selection: For boxes in main feeder conduit runs, use sizes not smaller than 8 inches square by 4 inches deep. Do not exceed 6 entering and 6 leaving raceways in a single box. Quantities of conductors (including equipment grounding conductors) in pull or junction box shall not exceed the allowable limits of the NEC.

B. Size: Provide pull and junction boxes for telephone, signal, and other systems at least 50 percent larger than would be required by Article 370 of NEC, or as indicated. Locate boxes strategically and provide shapes to permit easy pulling of future wires or cables of types normal for such systems.

C. Cable Supports: Install clamps, grids, or devices to which cables may be secured. Arrange cables so they may be readily identified. Support cable at least every 30 inches inside boxes.

3.5 INSTALLATION OF CABINETS AND HINGED DOOR ENCLOSURES:

A. Mount with fronts straight and plumb.

B. Install with tops 78 inches above floor.

C. Set cabinets in finished spaces flush with walls.

3.6 GROUNDING:

A. Electrically ground metallic cabinets, boxes, and enclosures. Where wiring to item includes a grounding conductor, provide a grounding terminal in the interior of the cabinet, box or enclosure.

3.7 CLEANING AND FINISH REPAIR:

A. Upon completion of installation, inspect components. Remove burrs, dirt, and construction debris and repair damaged finish including chips, scratches, abrasions and weld marks.
B. Galvanized Finish: Repair damage using a zinc-rich paint recommended by the tray manufacturer.

C. Painted Finish: Repair damage using matching corrosion inhibiting touch-up coating.

END OF SECTION 260534
SECTION 260553 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes identification of electrical materials, equipment, and installations. It includes requirements for electrical identification components including but not limited to the following:

1. Identification labeling for raceways, cables, and conductors.
2. Operational instruction signs.
3. Warning and caution signs.
4. Equipment labels and signs.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

1.3 QUALITY ASSURANCE:

A. ANSI Compliance: Comply with requirements of ANSI Standard A13.1, "Scheme for the Identification of Piping Systems," with regard to type and size of lettering for raceway and cable labels.

PART 2 - PRODUCTS

2.1 ELECTRICAL IDENTIFICATION PRODUCTS:

A. Identify System Raceways with Painted Couplings & Connectors: Provide painted couplings & connectors for all concealed raceways. Install painted couplings at all conduit connecting couplings including end couplings at stub outs. Apply the following colors:

1. Normal Power: Unpainted
2. Fire Alarm: OSHA Red
3. BMS/Temperature Control: Blue

B. Adhesive Marking Labels: Pre-printed, flexible, self-adhesive labels with legend indicating voltage and service (Emergency, Lighting, Power, Power D.C., HVAC, Control, Fire).

1. Label Size for Raceways: 1 inch high by 12 inches long (minimum) with 5/8 inch minimum height letters.
2. Label Size for Boxes, Enclosures, and Utilization Equipment: See detail on electrical plans.
3. 600 Volt and Below Normal: White letters on black background indicating source equipment designation, circuit number(s), and voltage.
4. Fire Alarm: White letters on red background indicating "FIRE ALARM".
5. Temperature Control: White or black letters on blue background indicating "TEMP. CONTROL."
6. Ground: White or black letters on green background indicating "GROUND" and equipment and designation.
C. Adhesive Marking Tape for banding Wires and Cables: Self-adhesive vinyl tape, not less than 3 mils thick by 1 inch to 2 inches in width. Make each color band completely encircling cables, at penetrations of walls and floors, at each junction box and at 20-foot maximum intervals in straight runs.

D. Wire/Cable Designation Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound, cable/conductor markers with preprinted numbers and letter.

E. Engraved, Plastic-Laminated Labels, Signs and Instruction Plates: Engraving stock melamine plastic laminate, 1/16 inch minimum thick for signs up to 20 square inches, or 8 inches in length; 1/8 inch thick for larger sizes. Engraved legend in white letters on black face for normal and white letters on red face for emergency, black letters on yellow face for UPS and punched for mechanical fasteners. Where required for ground connections, provide engraved legend in white letters on green face.

F. Fasteners for Plastic-Laminated and Metal Signs: Self-tapping stainless steel screws or number 10/32 stainless steel machine screws with nuts and flat and lock washers.

G. Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking nylon cable ties, 0.18-inch minimum width, 50 lb minimum tensile strength, and suitable for a temperature range from minus 50 degrees F to 350 degrees F. Provide ties in specified colors when used for color coding.

H. Adhesive Marking Tape for Device Cover Plates: 3/8 inch Kroy tape or Brother labels with 3/16 inch minimum height letters. Tape shall have black letters on clear background for normal and red letters on clear background for emergency. Embossed Dymo-Tape labels are not acceptable.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Lettering and Graphics: Coordinate names, abbreviations, colors, and other designations used in electrical identification work with corresponding designations specified or indicated. Install numbers, lettering, and colors as approved in submittals and as required by code.

B. Install identification devices in accordance with manufacturer's written instructions and requirements of NEC.

C. Sequence of Work: Where identification is to be applied to surfaces that require finish, install identification after completion of finish work.

D. Conduit Identification: Label conduits with painted couplings and connectors concealed or with labels at 10 foot intervals (medium voltage or exposed) to identify all conduits run exposed or located above accessible ceilings. Conduits located above non-accessible ceiling or in floors and walls shall be labeled within 3 feet of becoming accessible. Labels for multiple conduits shall be aligned and read the same direction. Where conduits enter or exit a panelboard, pull or junction box, switchboard, or other distribution equipment, conduit labels shall include circuit number in addition to feeder identification and voltage. Use the colors as identified above:

E. Identify Junction, Pull and Connection Boxes: Identification of systems and circuits shall indicate system voltage and identity of contained circuits on outside of box cover.
Color code shall be same as conduits for pressure sensitive labels. Use self-adhesive marking tape labels at exposed locations and indelible black marker at concealed boxes. All fire alarm boxes shall have covers painted red. All temperature control boxes shall have covers painted blue.

F. Circuit Identification: Tag or label conductors as follows:

1. Future Connections: Conductors indicated to be for future connection or connection under another contract with identification indicating source and circuit numbers.
2. Multiple Circuits: Where multiple branch circuits, control wiring or communications/signal conductors are terminated or spliced in a box or enclosure, label each conductor or cable with circuit number. For control and communications/signal wiring, use wire/cable marking tape at terminations in wiring boxes, troughs and control cabinets. Use consistent letter/number conductor designations throughout on wire/cable marking tapes.
3. Match identification markings with designations used in panelboards shop drawings, Contract Documents, and similar previously established identification schemes for the facility's electrical installations.

G. Apply warning, caution and instruction signs and stencils as follows:

1. Install warning, caution or instruction signs where required by NEC, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions or explanations are needed for system or equipment operation. Install butyrate signs with metal backing for outdoor items.

H. Install equipment/system circuit/device identification as follows:

1. Apply equipment identification labels of engraved plastic-laminate on each major unit of electrical equipment in building, including central or master unit of each electrical system. This includes communication/signal/alarm systems, unless unit is specified with its own self-explanatory identification. Text shall match terminology and numbering of the Contract Documents and shop drawings. Apply labels for each unit of the following categories of electrical equipment.
 a. Panelboards, electrical cabinets and enclosures
 b. Access doors and panels for concealed electrical items
 c. Motor Controllers
 d. Control devices
 e. Transformers
 f. Fire alarm control panel

I. Apply circuit/control/item designation labels of engraved plastic laminate for disconnect switches, breakers, pushbuttons, pilot lights, and similar items for power distribution and control components above, except panelboards and alarm/signal components, where labeling is specified elsewhere.

J. For panelboards, provide framed, typed circuit schedules (label all spares and spaces in pencil) with explicit description and identification of items controlled by each individual breaker.
K. Tag all grounding electrode conductors, associated bonding conductors, and grounding conductors at their point of attachment to any ground bus and grounding electrode (where possible) with a 2 inch diameter round green phenolic nameplate. Lettering shall be 1/4 inch high with 1/5 inch between lines centered on the tag stating "DO NOT DISCONNECT," "MAIN GROUND." Nameplate shall attach to conductor with a short length of small chain.

L. Install labels at locations as required and at locations for best convenience of viewing without interference with operation and maintenance of equipment.

M. Adhesive Marking Tape for Exposed Cables in Cable Tray: Make each color band completely encircling cables, at penetrations of walls and floors, at each junction box and at 20-foot maximum intervals in straight runs.

N. Provide tape labels for identification of individual receptacles including receptacles in furniture systems and light switch wall-plates. Locate tape on front of plate and identify panel/branch circuit serving the receptacle. Provide tape labels for identification of individual switches or thermal overload switches which serve as equipment disconnects. Locate the tape on the front of the cover-plate and identify panel/branch circuit serving the equipment.

END OF SECTION 260553
SECTION 260583 – WIRING CONNECTIONS

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of electrical connections for equipment is indicated by drawings and schedules. Electrical connections are hereby defined to include connections used for providing electrical power to equipment.

B. Applications of electrical power connections specified in this section include the following:

1. From electrical source to safety/control equipment
2. From safety/control equipment to motors
3. From motors to secondary controllers (if applicable)
4. To ancillary devices and appurtenances (converters, rectifiers, transformers, inverters, rheostats, and similar current adjustment features of equipment)
5. To grounding system
6. Other connections as shown within the electrical drawings

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical connectors and terminals, of types and ratings required, and ancillary connection materials, including electrical insulating tape, soldering fluxes, and cable ties, whose products have been in satisfactory use in similar service for not less than 5 years.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Submit manufacturer's data on electrical connections for equipment products and materials. As a minimum, information shall include: Operating Voltage; MCA (Min. circuit amperes); FLA (Full load amperes); MFS (Max. fuse size) or MOP (Max. overcurrent protection); and SCCR (Short Circuit Current Rating) and shall match electrical equipment and protection/distribution sizes and be rated for available short circuit currents as shown on the drawings.

C. Shop Drawings: Provide wiring diagrams where specialized control is details on the plans. Indicate all devices and final enclosure sizes.

D. Coordination Drawings: All mechanical and plumbing equipment shall be coordinated with unit nameplate information per the actual nameplate to be included on the equipment.

E. Field Quality Control Test Reports: Submit record of testing as described below. Refer to Section 26 05 00 – Common Work Results for additional requirements.

1.4 DEFINITIONS:

A. Load voltage wiring shall be defined as:
1. Conduit and wiring required to carry power to motors and other equipment or devices. Wiring from control devices to equipment that carry power to drive that equipment such as line voltage thermostats, etc., shall be included as load voltage wiring. Wiring that provides power to control panels, control transformers, control relays, time clocks, etc., shall also be included as load voltage wiring.

PART 2 - PRODUCTS

2.1 GENERAL:
A. Overcurrent Protective Devices (OCPDs): Provide type, rating, and features as indicated. Comply with Division 26 Section on Low Voltage Circuit Protective Devices, with OCPDs adapted to equipment connection installation. Tandem circuit breakers shall not be used. Multiple breakers shall have common trip.

B. Provide motor controllers that are horsepower rated to suit the motor controlled.

C. Contacts shall open each ungrounded connection to the motor. Contacts shall be NEMA rated, 75 degrees C.

D. Overload relays shall be ambient-compensated type with inverse-time-current characteristic. Provide with heaters or sensors in each phase matched to nameplate full load current of the specific motor to which connected with appropriate adjustment for duty cycle and power factor correction supplied with the motor.

2.2 MATERIALS AND COMPONENTS:
A. General: For each electrical connection indicated, provide complete assembly of materials, including but not necessarily limited to, pressure connectors, terminals (lugs), electrical insulating tape, electrical solder, electrical soldering flux, heat-shrinkable insulating tubing, cable ties, solderless wire-nuts, disconnect, starter, contactor, relays, etc., and other items and accessories as needed to complete splices and terminations of types indicated.

B. Metal Conduit, Tubing and Fittings:
1. General: Provide metal conduit, tubing and fittings of types, grades, sizes and weights (wall thicknesses) indicated for each type service. Provide products complying with Division 26 section on Raceways.

C. Wires, Cables, and Connectors:
1. General: Provide wires, cables, and connectors complying with Division 26 section on Wires and Cables.
2. Wires/Cables: Unless otherwise indicated, provide wires/cables (conductors) for electrical connections which match, including sizes, ratings, and material of wires/cables which are supplying electrical power.
3. Connectors and Terminals: Provide electrical connectors and terminals which mate and match, including sizes and ratings, with equipment terminals and are recommended by equipment manufacturer for intended applications.
4. Electrical Connection Accessories: Provide electrical insulating tape, heat-shrinkable insulating tubing and boots, electrical solder, electrical soldering
flux, wire-nuts and cable ties as recommended for use by accessories manufacturers for type services indicated.

2.3 MANUAL MOTOR STARTERS:

A. Manual starters shall be flush-mounting type except where conduits are run exposed or as otherwise noted. Manual starters shall be complete with properly sized overload protection and neon pilot light. Manual starters shall be Square D Class 2510 or Allen-Bradley Bulletin 600 with stainless steel plates.

B. Heater units in all manual motor starters shall be sized for approximately 115 percent of full load motor current. Check and coordinate all thermal protective devices with the equipment they protect.

2.4 CIRCUIT AND MOTOR DISCONNECT SWITCHES:

A. General: Provide circuit and motor disconnect switches in types, sizes, duties, features, ratings, and enclosures as indicated. All equipment with maximum fuse size listed in nameplate shall have fusible disconnect switch provided. Provide NEMA 1 enclosure. For outdoor switches and switches indicated as weatherproof, provide NEMA 3R enclosures with rain-tight hubs. For motor and motor starter disconnects, provide units with horsepower ratings suitable to the loads.

B. Fusible Switches: Provide UL type "HD" 100 percent duty rated switches, with fuses of classes and current ratings indicated. Where current limiting fuses are indicated, provide switches with non-interchangeable feature suitable only for current limiting type fuses. All disconnect switches shall be fusible unless otherwise noted.

C. Non-fusible Disconnects: Provide UL type "HD" 100 percent duty rated switches of classes and current ratings as indicated.

D. Accessories:

1. Handles shall be lockable in open and closed position without modification.
2. Disconnect switches provided in the motor feeders between a VFD and the motor shall be provided with auxiliary contacts at the disconnect that de-energizes power to the VFD.

2.5 MOTOR STARTERS:

A. See Division 23 for Requirements

PART 3 - EXECUTION

3.1 INSPECTION:

A. Inspect area and conditions under which electrical connections for equipment are to be installed and provide notification in writing of conditions detrimental to proper completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to Installer. Start of work constitutes acceptance of conditions.
3.2 INSTALLATION OF ELECTRICAL CONNECTIONS:

A. Furnish, set in place, and wire (except as may be otherwise indicated) all heating, ventilating, air conditioning, plumbing and fire protection, elevator, etc., motors and controls in accordance with the following schedule and in accordance with equipment manufacturer's written instructions and with recognized industry practices, and complying with applicable requirements of UL, NEC and NECA's "Standard of Installation" to ensure that products fulfill requirements. Carefully coordinate with work performed under the Mechanical Division of these Specifications.

B. Coordinate with other work, including wires/cables, raceway and equipment installation, as necessary to properly interface installation of electrical connections for equipment with other work.

C. Connect electrical power supply conductors to equipment conductors in accordance with equipment manufacturer's written instructions and wiring diagrams. Mate and match conductors of electrical connections for proper interface between electrical power supplies and installed equipment.

D. Maintain existing electrical service and feeders to equipment serving occupied areas and operational facilities, unless otherwise indicated, or when authorized otherwise in writing by Owner, or Architect/Engineer. Provide temporary service during interruptions to existing facilities. When necessary, schedule momentary outages for replacing existing wiring systems with new wiring systems. When that "cutting over" has been successfully accomplished, remove, relocate, or abandon existing wiring as indicated.

E. Cover splices with electrical insulating material equivalent to, or of greater insulation resistivity rating, than electrical insulation rating of those conductors being spliced.

F. Prepare cables and wires, by cutting and stripping covering armor, jacket, and insulation properly to ensure uniform and neat appearance where cables and wires are terminated. Exercise care to avoid cutting through tapes which will remain on conductors. Also avoid "ringing" copper conductors while skinning wire.

G. Trim cables and wires as short as practicable and arrange routing to facilitate inspection, testing and maintenance.

H. Tighten connectors and terminals, including screws and bolts, in accordance with equipment manufacturers published torque tightening values for equipment connectors. Accomplish tightening by utilizing proper torqueing tools, including torque screwdriver, beam-type torque wrench, and ratchet wrench with adjustable torque settings. Where manufacturer's torqueing requirements are not available, tighten connectors and terminals to comply with NEC.

I. Install pre-finished cord set where connection with attachment plug is indicated or specified, or use attachment plug with suitable strain-relief clamps.

J. Provide suitable strain relief clamps for cord connection to outlet boxes and equipment connection boxes.

K. Make wiring connections in control panel or in wiring compartment of pre-wired equipment and interconnecting wiring in accordance with manufacturer's instructions.
L. Install disconnect switches, controllers, control stations, and control devices such as limit switches and temperature switches as indicated or per manufacturer's instructions.

M. Provide each motor with a fused disconnect switch for 3 phase motors and horsepower rated and/or thermal rated disconnect switch for single phase motors as shown on schedules or required. Coordinate with manufacturers of standalone, packaged and other equipment for factory installed and field installed motors and controllers.

N. Provide circuit and motor disconnect switches as indicated and where required by Code. Comply with switch manufacturers printed installation instructions. Install within sight of motors.

O. All splices in control panels, terminal junction boxes, low voltage control circuits and fire alarm conductors shall be on numbered terminal strips.

P. Each branch circuit serving dedicated, isolated or emergency receptacles, multi-outlet assemblies or equipment connections shall be furnished with a dedicated neutral conductor. Neutrals common to more than one circuit shall only be permitted where specifically noted.

Q. Where conduit is not required, plenum rated cable shall be provided in ceiling, floor or other air plenum spaces.

3.3 FIELD QUALITY CONTROL:

A. Provide all test results to Engineer in Substantial Completion Submittals, via Architect, prior to scheduling Substantial Completion observations. Test results shall be tabulated to show name of tested device, measured value, expected values, acceptable standard deviation, and test conditions, as well as any miscellaneous variables that may be applicable to test being performed.

B. Upon completion of installation of electrical connections, and after circuitry has been energized with rated power source, test connections to demonstrate capability and compliance with requirements. Ensure that direction of rotation of each motor fulfills requirement. Correct malfunctioning units at site, then retest to demonstrate compliance.

3.4 EQUIPMENT CONNECTION SCHEDULES:

A. Mechanical Equipment:

1. Refer to Mechanical Equipment Schedule on the drawings.

2. It is suggested that all load voltage wiring shall be provided under Division 26.

3. The exact furnishing and installation of the equipment is left to the Contractors involved. Comply with the applicable requirements of Division 26 for all electrical work which is not otherwise specified. Contractor shall refer to the Division 26 and Division 23 specifications and plans for all power and control wiring and shall advise the Architect/Engineer of any discrepancies prior to bidding.

B. For factory pre-wired equipment specified under other Divisions, all wiring within the equipment shall be by the manufacturer. All required field wiring between sections or other field connection details for power and/or control shall be clearly identified on shop drawings for contractor installation. Division 26 drawings show the provided electrical characteristics for equipment.
C. Manufacturer’s equipment provided under other divisions which varies from what is shown on Division 26 drawings shall be the responsibility of the Contractor to complete and pay for any costs for those variations.

1. Fire alarm system control modules and wiring from fire alarm contacts to fire alarm system shall be installed by Fire Alarm system installer and match other components of the system. Refer to Division 28.

D. Refer to Schedule on drawings for information on Owner Furnished Equipment.

END OF SECTION 260583
SECTION 262726 – WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY:

A. The extent of wiring device work is indicated by drawings and schedules. Wiring devices are defined as single discrete units of electrical distribution systems which are intended to carry but not utilize electric energy.

B. Types of electrical wiring devices in this section include the following:

1. Receptacles
2. Ground-fault circuit interrupters
3. Switches
4. Dimmers
5. Wall-plates
6. Electronic Sensors
7. Plugs and connectors

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical wiring devices, of types, sizes, and ratings required, whose products have been in satisfactory use in similar service for not less than 3 years.

B. Installer's Qualifications: Firm with at least 2 years of successful installation experience on projects utilizing wiring devices similar to those required for this project.

C. Listing and Labeling: Provide products that are listed and labeled for their applications and installation conditions and for the environments in which installed.

1. The Terms "Listed" and "Labeled": As defined in the "National Electrical Code", Article 100.
2. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7.

1.3 SUBMITTALS:

A. See Section 26 05 00 – Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Provide manufacturer's catalog information showing dimensions, materials, colors, and configurations. Samples of device plates for color selection and evaluation of technical features shall be submitted with product data.

C. Field Quality Control Test Reports: Refer to Section 26 05 00 – Common Work Results for additional requirements.

D. Operation and Maintenance Data: Include detailed information on system operation, device programming and setup, replacement parts and recommended maintenance procedures and intervals. Refer to Section 26 05 00 – Common Work Results for additional requirements.
1.4 COORDINATION:

A. Wiring Devices for Owner Furnished Equipment: Match devices to plug connectors for Owner-furnished equipment.

B. Cord and Plug sets: Match cord and plug sets to equipment requirements.

PART 2 - PRODUCTS

2.1 WIRING DEVICES:

A. Color selection shall be verified with Architect/Engineer prior to ordering. Devices shall be Ivory.

B. Receptacles:

1. All duplex, single, Isolated Ground, Tamper Resistant, Ground Fault Interrupter (GFCI), and other special receptacles shall be minimum, specification grade commercial series, listed by Underwriter's Laboratories, UL 498 and Federal Specification FS W-C-596, 20 amp, nylon face and have a metal mounting strap with self-grounding and have a hex-head green grounding screw and be side and back wired. Each device shall bear the UL/FS Label. Meet NEMA standards for wiring devices including NEMA WD 1 for general requirements and NEMA WD 6 for dimensional standards. Each device shall have terminal screws and clamps listed for use with stranded wire. Plug-tail device connections are acceptable.

2. Convenience Receptacle Configuration: Duplex or Single as indicated on the drawings, Type 5-20R.

3. Tamper Resistant Receptacles: Where indicated or required provide Duplex receptacle with integral switch and contacts to prevent energization unless a plug is inserted. Provide receptacles that are UL listed and labeled “TR”.

4. Ground-Fault Interrupter Receptacles: Where indicated or required provide "local reset" auto monitoring "self test" ground-fault circuit interrupters. Provide unit capable of being installed in a 2-3/4" deep outlet box without adapter, grounding type, Class A, Group 1 per UL Standard 943. Provide visual indication of lost protection.

C. Switches:

1. Wall Switches for Lighting Circuits: NEMA WD1 and WD-6; FS W-S-896E; AC quiet type specification grade commercial series listed by Underwriter's Laboratories with toggle handle, rated 20 amperes at 120-277 volts AC, unless noted otherwise. Mounting straps shall be metal and be equipped with a green hex-head ground screw. Each switch shall bear the UL/FS Label.

 a. Each device shall have terminal screws and clamps listed for use with stranded wire. Plug Tail device connections are acceptable.

 b. Pilot Light Type: Where indicated, provide Lighted handle lit when switch is "on."

 c. Locator Type: Where indicated, provided continuously lighted handle.

D. Combination Devices: Provide UL listed heavy-duty quiet type switch, 20-amperes, 120-277 volts AC, with toggle switch handle, and 3-wire grounding receptacle, 20-amperes, 120- volts, in a common 4 inch square box.
1. LED Lamp Dimmers: Provide UL listed single-pole, full-wave semi-conductor modular type AC dimmers; wattage and voltage as indicated, and with electromagnetic filters to reduce noise, RF and TV interference to minimum. Provide for use with 0-10V LED Drivers. Provide with power failure memory. Construct with continuously adjustable trim potentiometer for adjustment of low dimming; and with anodized heat sinks. Provide 5-inch wire connecting leads.

2.2 WIRING DEVICE ACCESSORIES:

A. Verify color and type with Architect/Engineer prior to ordering. Device color to match Wiring Device Color identified above.

B. Wall Plates: Provide wall plates for single and combination wiring devices, of types, sizes, and with ganging and cutouts as indicated. Select plates which mate and match wiring devices to which attached. Construct with metal screws for securing plates to devices; screw heads colored to match finish of plates. Identify all wall plates used for receptacles with branch circuit number per requirements of section on Electrical Identification. Provide blank wall plates for all cable, data, telephone and junction and outlet boxes. Where cables are routed through the plate, provide grommets in opening to protect cables. Provide plates possessing the following additional construction features:

1. Material and Finish: 0.04" thick, Nylon, smooth.
2. Material and Finish: 0.04" thick, type 302 satin finished stainless steel for use in unfinished areas, mechanical, and electrical rooms.

C. Telephone/Power Poles: Provide factory-assembled telephone/power poles of types, sizes and ratings indicated; for use with data, and power systems installed above suspended ceilings. Construct with provisions for two (2), 20-amperes, 125-volts, 3-wire duplex receptacles and four (4) Cat 6 data cables. Isolate power section from low voltage compartment with separating steel enclosure. Extend wiring from receptacles to junction box at top of pole where connections are made above suspended ceiling. Provide pole foot with carpet pad; provide ceiling trim plate. Provide finish treatment and color as selected by Architect/Engineer. The Tele-Power Poles must be UL Listed for field modifications, changes and additions of receptacles, devices, and circuits.

PART 3 - EXECUTION

3.1 INSTALLATION OF WIRING DEVICES:

A. Install wiring devices as indicated, in accordance with manufacturer's written instructions, applicable requirements of NEC and in accordance with recognized industry practices to fulfill project requirements.

B. Coordinate with other work, including painting, electrical boxes and wiring work, as necessary to interface installation of wiring devices with other work.

C. Install wiring devices only in electrical boxes which are clean; free from excess building materials, dirt, and debris.

D. Install wiring devices after wiring work is completed.

E. Install wall plates after painting work is completed.
F. Tighten connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values for wiring devices. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Stds. 486A.

G. Install telephone/power service poles in accordance with final furnishing arrangement. Poles shall be plumb, true, and secure.

H. Provide GFCI type outlets as required in NEC 210, including but not limited to: each above counter duplex receptacle shown within 6'-0" of sinks/lavatories; Bathrooms; Kitchens; Roof Tops; Outdoors; Indoor Wet locations; Locker Rooms; Shower Facilities; Garages; Service Bays; vending machines; etc.

1. For above counter multi-outlet assemblies which do not contain duplex receptacles that can be replaced with GFCI devices, install GFCI circuit breakers on the branch circuit(s) feeding the assembly.
2. Where GFCI devices are required and/or shown but are not readily accessible when equipment is installed, i.e. vending machines, etc., provide GFCI circuit breakers on the branch circuit(s) feeding the assembly.

I. Provide Tamper Resistant (TR) devices for all 120V, 15A and 20A, non-locking receptacles in areas accessible to the general public.

3.2 PROTECTION OF WALLPLATES AND RECEPTACLES:

A. Upon installation of wall plates and receptacles, advise Contractor regarding proper and cautious use of convenience outlets. At time of Substantial Completion, replace those items which have been damaged, including those burned and scored by faulty plugs.

3.3 GROUNDING:

A. Provide equipment grounding connections for wiring devices, unless otherwise indicated. Tighten connections to comply with tightening torques specified in UL Std. 486A to assure permanent and effective grounds.

3.4 CLEANING:

A. Internally clean devices, device outlet boxes and enclosures. Replace stained, cracked, damaged or improperly painted wall plates or devices. Remove temporary markings of labels.

3.5 TESTING:

A. Prior to energizing circuitry, test wiring for electrical continuity, and for short-circuits. Ensure proper polarity of connections is maintained and prepare test reports. Subsequent to energization, test wiring devices to demonstrate compliance with requirements.

1. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices or similar problems.
2. Tests for Convenience Receptacles:
a. Line Voltage: Acceptable range is 114 to 126 V.
b. Ground Impedance: Values of up to 2 ohms are acceptable.
c. Polarity: Test for correct neutral conduct to neutral terminal connection.
d. Using the test plug, verify that the device and its outlet box are securely mounted.
e. GFCI Receptacles: Test for tripping values specified in UL 1436 and UL 943. Test with both local and remote fault simulations in accordance with manufacturing recommendations.
f. SPD receptacle indicating lights for normal indication check.

3. Test Instruments:
 a. Use instruments that comply with UL 1436.
 b. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Correct Deficiencies and Report:

1. Correct unsatisfactory conditions and retest to demonstrate compliance; replace devices as required to bring system into compliance.
2. Correct malfunctioning units on-site, where possible and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Prepare a report that identifies enclosure, units, conductors and devices checked and describe results. Include notation of deficiencies detected, remedial action taken, and observations and test results after remedial action.

END OF SECTION 262726
PAGE INTENTIONALLY LEFT BLANK
SECTION 283112 – FIRE DETECTION AND ALARM - EXPANSION / REMODEL

PART 1 - GENERAL

1.1 SUMMARY:

A. Drawings indicate general design intent and do not indicate all equipment or devices or the full extent of the System. Provide complete design of the Fire Alarm System for review by local fire authority including layouts and deferred submittals. There is an existing fire control panel installed in the facility. Any references to the existing control operation equipment, etc., are for information on system operation. All existing devices such as call boxes, connections, shall remain as existing U.O.N. on drawings.

B. Provide system component devices compatible with the existing system with changes required for proper operation on the new, upgraded equipment.

C. Provide additions and modifications to existing system suitable for occupancy group as defined by local Authority Having Jurisdiction (AHJ)

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of fire alarm systems of types, sizes, and electrical characteristics required, and whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 5 years of successful installation experience on projects with fire alarm systems work similar to that required for this project.

1. Firm with manufacturer's factory trained personnel.
2. Firm with factory authorized service organization and spare parts stock within 200 miles of the project and with a 24 hour response time.
3. Installation shall be accomplished by or supervised by NICET II or higher.

C. Codes and Standards:

1. The complete installation shall conform to the applicable sections of NFPA 72, Local Code Requirements, and the National Electrical Code; with particular attention to article 760. All control equipment must have transient protection to comply with UL 864 requirements or Standard #497B as applicable.
2. UL Compliance and Labeling: Comply with provisions of UL safety standards pertaining to fire alarm systems; and provide products and components which are UL-listed and labeled.
3. FM Compliance: Provide fire alarm components and accessories which are FM-approved.
4. The fire alarm system and devices shall comply with ADA 1990 and UL 1971 requirements.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.
B. Product Data: Submit manufacturer's technical product data, including specifications, data sheets, wiring diagrams, equipment ratings, dimensions, finishes and descriptions of system operation. Submit manufacturer's installation instructions, including outlet or back box requirements for each piece of equipment.

C. Shop Drawings: Provide shop drawing submittal for approval by the local Fire Department and/or The Authority having jurisdiction. The Contractor shall arrange to have the Fire Alarm System shop drawing submittal prepared, sealed, and signed by a professional fire protection engineer and NICET III or NICET IV in Fire Alarm Systems. Preparer shall assume the duty of Engineer of Record for the Fire Alarm System design. Provide shop drawings showing system components, including panels and cabinets, locations, quantities, and full schematic of system wiring showing conductor routings and quantities, and connection details. All conduit routing must be submitted to, and accepted by, the Architect/Engineer. Shop drawing documents must be submitted simultaneously with sprinkler system documents and prior to installation.

1. This information shall be submitted on 1/8" = 1'-0" scale building floor plans. No other systems shall be included on these plans. Reproduction of contract drawing will not be acceptable. The following information shall be included in the shop drawings:
 a. Occupancy group and use.
 b. Include brief description of scope of work
 c. Indicate extent of building sprinkler system.
 d. Indicate addition to/modifications of existing system.
 e. One-line diagram showing[indicating number of devices and appliances per zone/circuit.
 f. Submit Zone schedule
 g. Wire sizes, color coding, type(s) and voltage drop calculations.
 h. Back-up battery calculations
 i. Indicate annunciation method and include graphic zone map.
 j. Addition to or modification of the system shall be distinguishable from the existing and be identified on the floor plans as well as the one-line diagram(s).
 k. Include wiring diagrams for all fire alarm junction boxes (new and existing) impacted by this project. Include wiring numbers on all connections.
 l. Proposed conduit routing, specifically if exposed conduit or wiremold is being proposed. All surface mounted conduit and wiremold routing must be submitted to, and accepted by, the Architect/Engineer.
 m. Connection details for new and existing devices/equipment.
 n. Provide updated room names and numbers that match the names and numbers as labeled at the building. Room names and numbers shown on the contract documents are not necessarily those that are currently being used in the building. The fire alarm manufacturer shall coordinate with the contractor and owner on existing and new work and survey the site on existing work to identify the proper names and numbers.
 o. Submit graphic annunciator and/or map layouts for review by the Architect/Engineer prior to fabrication
 p. Submit sequence of operation and verification of system operation by manufacturer or his authorized representative

D. Quality Assurance Documentation:

1. Submit manufacturer's certificate that system meets or exceeds specified requirements.
2. All shop drawings, battery and voltage drop calculations shall be submitted to the authority having jurisdiction for review after review by the Architect/Engineer.
E. Field Quality Control Test Reports: Submit record of testing as described below. Refer to Section 26 05 00 – Common Work Results for additional requirements.

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Handle fire alarm equipment carefully to prevent damage, breaking, and scoring. Do not install damaged equipment or components; replace with new.

B. Store fire alarm equipment in clean, dry place. Protect from weather, dirt, fumes, water, construction debris, and physical damage.

1.5 EXTRA MATERIALS:

A. General: Provide extra materials as listed below in addition to that required to complete the work. The additional stock shall not be used unless specifically authorized by the owner’s representative.

B. Lamps: Furnish spare/replacement lamps and LED’s amounting to not less than three (3) lamps of each type and of each color.

C. Devices:

1. Furnish spare/replacement detection bases amounting to 5 percent of the quantity installed by this work, but not less than two (2) of each type, including duct detector housings.

2. Furnish spare/replacement detectors amounting to 5 percent of the quantity installed by this work, but not less than two (2) of each type.

3. Furnish spare/replacement adaptor modules and relays amounting to 5 percent of the quantity installed by this work, but not less than one (1) of each type.

4. Furnish spare/replacement speakers, speakers/horns, combination speaker/horn/strobe units, and strobe units amounting to 5 percent of the quantity installed by this work but not less than one (1) of each type.

5. Furnish spare/replacement AIM’s, and AOM’s or systems similar components amounting to 5 percent of the quantity installed by this work but not less than one (1) of each type.

1.6 OPERATION:

A. The system alarm operation subsequent to the alarm activation of any manual station, automatic detection device, and monitoring device serving the “alarm” status of an air sampling smoke detector, or sprinkler flow switch shall be unchanged from the existing system operation. When owner has agreed to or asked for revisions to the evacuation plan, all new operational sequences shall be documented and approved in writing.

B. Provide alterations to the existing systems that incorporate the following additional functions (if not already present):

1. All audible alarm indicating appliances shall sound a distinctive and continuous fire alarm signal until silenced by the alarm silence switch at the control panel or at the remote annunciator.

2. All visible alarm indicating appliances shall flash continuously until the system is reset. Visual alarm devices shall continue to operate when audible devices are silenced, when allowed by the AHJ. Any subsequent zone alarm shall reactivate the alarm indicating appliances.

3. All doors normally held open by door control devices shall release.
4. A supervised signal to notify the monitoring center shall be activated.
5. Activation of a sprinkler flow device shall cause the exterior horn/light to operate continuously until the flow has ceased.
6. Activation of a duct detector shall alarm the system and shut down the associated air handling unit.

C. The activation of any system smoke detector shall initiate an Alarm Verification operation whereby the panel will reset the activated detector and wait for a second alarm activation. If within one (1) minute after resetting, a second alarm is reported from the same or any other smoke detector, the system shall process the alarm as described previously. If no second alarm occurs within one minute the system shall resume normal operation. The Alarm Verification shall operate only on smoke detector alarms. Other activated initiating devices shall be processed immediately. The alarm verification operation shall be selectable by zone.

1. The control panel shall have the capability to display the number of times (tally) a zone has gone into a verification mode. Should this mode verification tally reach a pre-programmed number, a trouble condition shall occur.

D. A manual evacuation (drill) switch shall operate the alarm indicating appliances without causing other control circuits to be activated. However, should a true alarm occur, all alarm functions would occur as described previously.

1.7 SUPERVISION:

A. Supervision shall be unchanged from the existing system. Supervision of additional devices shall be as follows:

1. Provide independently supervised and independently fused indicating appliance circuits for alarm speakers and flashing alarm lamps. Disarrangement conditions of any circuit shall not affect the operation of other circuits.
2. Auxiliary manual control shall be supervised so that an "off normal" position of any switch shall cause an "off normal" system trouble.
3. Each independently supervised circuit shall include a discrete LCD readout to indicate disarrangement conditions per circuit.
4. The System Modules shall be electrically supervised for module placement. Should a module become disconnected the system trouble indicator shall illuminate and the audible trouble signal shall sound.
5. The system shall have provisions for disabling and enabling all circuits individually for maintenance or testing purposes.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturers: Provide materials that mate and match with existing system components. Subject to compliance with requirements, provide fire alarm system components manufactured by the same manufacturer of the existing system.

1. Notifier – Field Verify Series prior to quotation.

2.2 FIRE ALARM AND DETECTION SYSTEMS:

A. General: Provide complete fire alarm products of types, sizes and capacities indicated, which comply with manufacturer’s standard design, materials, components; construct in accordance
with published product information, and as required for complete installation. Provide fire alarm
and detection systems for applications indicated.

B. Wiring System Materials: Provide basic wiring materials which comply with Division 26
sections; "Raceways", "Wires and Cables" and "Electrical Boxes and Fittings".

1. Provide wire and cable in accordance with requirements of manufacturer. Wire insulation
shall comply with NEC Article 760.
2. Provide individual solid copper conductor sizes AWG #14, or larger.
3. Provide multi-conductor cables for wire sizes smaller than AWG #16.
4. Provide conductors which are UL listed for the installation and location, and approved for
fire alarm usage.
5. Initiating circuits shall be color coded red for positive, red with black strip for negative.
Indicating circuits shall be color coded red with yellow stripe for positive, red with brown
stripe for negative.
6. All conductors shall be numbered and their numbers shall correspond to the terminal
block numbering they are connected to. Provide conductor wiring and terminal block
numbering.

C. Power Supplies: Existing system operates on 120 VAC power supply. Provide additional
power supplies and other equipment necessary to accommodate new or modified existing
devices.

1. Provide battery back-up and increase battery back-up to system as required. Design
battery back-up to take over supply to system within 30 seconds of loss of primary
system to 85 percent voltage. Provide battery system capable of operation of system for
24 hours under normal conditions and then for 15 minutes under alarm conditions.

D. Provide Control of additional auxiliary services as follows:

1. Interior flashing strobe lights
2. Fire/Smoke damper releases
3. Remote annunciators

2.3 FIRE ALARM CONTROL PANEL:

A. Connect additional devices to existing fire alarm control panel. Modify and upgrade panel for
compatibility with current codes and current UL requirements and as required for the additional
features or equipment. Provide all necessary reprogramming and recertification.

2.4 ADDRESSABLE COMMUNICATION NETWORK:

A. Extend or modify existing communications network as required for the additional equipment.

2.5 ADDRESSABLE DEVICE TYPES:

A. General: Devices will be located as shown on the drawings. The location of addressable
devices will be selected to optimize the system layout in order to provide the level of protection,
zone identification and control as shown on the drawings.

B. Addressable Detector Bases: All addressable smoke and heat detector heads will plug into
their bases. The base will contain electronics that communicate the detector status (normal,
alarm, trouble) to the control panel over two wires. The same two wires shall also provide
power to the base and detector. Detector heads (smoke or heat) must be interchangeable. Upon removal of the head, a trouble signal will be transmitted to the control panel.

C. Photoelectric Detector Head: Photoelectric type detectors shall be of the solid state photoelectric type and shall contain no radioactive material. They will use a pulsed infrared LED light source and be sealed against rear air flow entry. The detector shall fit into an addressable base that is common with both the heat and photoelectric type detectors.

D. Pull Stations: Pull stations shall contain electronics that communicate the station’s status (alarm, normal) to the control panel over two wires which also provide power to the pull station. The address will be set on the station. They will be manufactured from high impact red Lexan. Station will mechanically latch upon operation and remain so until manually reset by opening with a key common to all system locks. Pull stations will be double action. The front of the station is to be hinged to a back-plate assembly and must be opened with a key to reset the station. The key shall be common with the control panels. The addressable manual station shall be Underwriters’ Laboratories Inc. listed for operation with the control panel.

E. Adaptor Module: Adapter Modules shall be used for monitoring of water flow, valve tamper, non-addressable detectors, and for control of smoke dampers, door holders, and other output control functions. Adapter Modules will be capable of mounting in a standard electric outlet box. Adapter Modules will include cover plates to allow surface or flush mounting. Adapter Modules will receive their 24VDC power from a separate two wire pair running from an appropriate power supply. There shall be two types of devices: Type 1; Monitor Adapter Modules - for conventional 2-wire thermal detector and/or contact device monitoring with Class B or Class A wiring supervision. Type 2; Control Adapter Modules - for signals, speakers, fire fighter phone jacks and other device control with Class B or Class A wiring supervision.

2.6 ALARM SIGNAL DEVICES:

A. Fire Alarm Horn/Strobe Combination: Provide high impact resistant red LEXAN Horn/Strobe combination devices as shown on the plans. Each assembly shall consist of two independent devices which are manufactured as compatible with each other and with the control equipment. Each assembly shall provide a terminal strip or wire leads for true in-out wiring connections. The strobe unit shall have a candela-second rating in compliance with ADA requirements and be rated at 24 VDC. Strobes shall be clear with red letters "FIRE" on two sides.

1. Provide wall mounting as shown on the plans. Verify manufacturer mounting requirements prior to rough in.

B. Individual Strobe Unit: Provide strobe units mounted where shown. Units shall match those used in the Speakers/Horns devices specified.

C. Where multiple strobe units are visible from a single location and the potential visible flash rate is 5 hz or more, provide synchronizing modules and strobes compatible for synchronizing as required. Provide additional wiring, conduit, and power supplies as necessary.

D. Speakers/Horns have been located on the drawings. It is the Contractor’s responsibility to provide adequate coverage to achieve the required 15 dBA above ambient at all locations throughout the building. If locations shown are inadequate, show additional devices on shop drawing submittal. Additional devices will be added at no additional cost to the contract including conduit wiring, power supplies, etc. System shall meet NFPA 72 Intelligibility Standards required by AHJ.
2.7 REMOTE ANNUNCIATOR:

A. Update/replace existing building annunciator. Annunciator shall include two lines of 40 character LCD display, alarm silence, system reset, programmable control switches, and be supervised from the FACP panel.

1. Annunciator shall indicate each alarm initiating device by address and description. Alarm conditions shall be indicated for each alarm initiating device.
2. The annunciator shall communicate with the control panel over one twisted shielded pair of wires. Operating power shall be 24 VDC and shall be fused at the control panel.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Examine areas and conditions under which fire alarm systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 IDENTIFICATION:

A. Provide electrical identification in accordance with Division 26 "Electrical Identification". SLC and NAC Devices shall be labeled with System Device Address and EOL locations shall be identified at each EOL device.

3.3 INSTALLATION OF BASIC WIRING SYSTEM MATERIALS:

A. Provide raceways and supports per code.
B. Install wiring, raceways, and electrical boxes and fittings in accordance with Division 26 sections; "Raceways", "Wires and Cables", and "Electrical Boxes and Fittings".
C. Install wiring in exposed ivory colored surface metal raceway only where specifically noted as allowed on wall or ceilings.
D. Install wires and cables without splices. Make connections at terminal strips in cabinets or at equipment terminals. Make soldered splices in electronic circuits in control cabinets.

3.4 INSTALLATION OF FIRE ALARM SYSTEMS:

A. Install fire alarm system components as indicated, in accordance with equipment manufacturer's written instructions and complying with applicable portions of NEC and NECA's "Standard of Installation."

B. Wiring: Wiring of fire alarm system is work of this section, but is not specifically detailed on drawings. Refer to the manufacturer's shop drawings for detailed wiring and connection information.

1. Complete wiring in accordance with manufacturer's requirements. Provide Striped Color coded wiring and install per manufacturer's point-to-point wiring diagram. Determine exact number of wires for each fire area zone from number and types of devices installed. Connect each device with sufficient wiring to complete its intended operation.
2. Where there are a number of additional power requiring devices such as smoke detectors, fan relays, door holders and smoke damper operators installed in a circuit,
group in numbers so power required does not exceed 80 percent of manufacturer's power supply rating. Provide extra wiring, or extra power supplies required to fulfill that requirement. In addition, provide extra or larger size wiring to alleviate voltage drops which makes device operate beyond voltage limits for which it was designed. Determine above with manufacturer’s representative while equipment is being installed.

C. Mount audible and visual devices per Americans with disabilities Act (ADA) 1990 requirements.

D. The existing system shall remain in operation while the new devices are being installed, tested, and accepted. Make provisions to keep F.A. System active and/or provide fire watch as acceptable to the AHJ and owner so that existing wiring can be reused as practical.

3.5 FIELD QUALITY CONTROL:

A. Connection and Supervision: Make connections to panel under manufacturer's supervision. Complete connections from this cabinet to panel utilizing Manufacturer's technicians.

B. Prior to starting work, establish that the existing system is in proper working order. If condition exists which prevents normal operation of specified additions and extensions, bring this fact to Architect/Engineer's attention prior to doing work affecting existing system. Where work is done without such notification, it is assumed that connections have been made to a working system, and performance requirements and guarantee will apply to entire system.

C. System Test and Approval: Submit shop drawings for function and operation only, pre-approved by authority having local jurisdiction.

1. Prior to final acceptance of system, manufacturer shall, in presence of Contractor and Owner's Representative, test each additional sensing or detection and alarm device including devices and equipment interlocks such as equipment shutdown and smoke dampers. Schedule test with Owner.

2. The completed fire alarm system shall be fully tested in accordance with NFPA 72 by the contractor in the presence of the Owner's representative and the Local Fire Marshal. The contractor shall coordinate the testing of each fire alarm detector added or relocated under this project with the fire department and forward a completed checklist showing each detector operated properly and that proper indication of detector operation occurred at all control panels, annunciator panels, remote indicators, remote test switches, etc.

3. In addition, proper interlocks, door release, etc. shall be documented with specific equipment affected listed by identifier.

4. Upon completion of a successful test, the contractor shall so certify in writing to the Owner and General Contractor.

5. Submit copy of test results in duplicate after signed by Owner's Representative to Architect/Engineer, Owner, and Local Fire Protection Authority. Mount copy of inspection record in lexan enclosed frame assembly on control panel.

6. Provide Record of Completion Documentation per NFPA 72.

3.6 MAINTENANCE CONTRACT:

A. Where a maintenance contract exists, the maintenance contractor shall make available to the owner a maintenance contract proposal to increase the scope of the maintenance agreement to provide a minimum of two (2) inspections and tests per year in compliance with NFPA 72 guidelines.
3.7 WARRANTY:

A. The Contractor shall guarantee all equipment and wiring provided under this contract free from inherent mechanical and electrical defects for a period of one year from the date of acceptance as set forth in the general conditions. If sections of the project are phased the acceptance and warranty should start and end at one time unless the project is phased and phased acceptance has been accepted by the owner.

3.8 OPERATING AND MAINTENANCE INSTRUCTIONS:

A. Provide three (3) copies of Operating and Maintenance Instructions in hardback, three-ring binders covering all equipment furnished. Manuals shall include the following information:

1. Name, address and telephone number of authorized service organization to be contacted for each equipment item. The local fire alarm supplier shall have a 24 hour telephone response service. An answering machine shall not be considered acceptable.
2. Parts list and wiring diagram, operating and maintenance instructions for each piece of equipment.
3. Record Set of Shop Drawings: Shop drawings corrected to show as-built conditions. Transfer modifications from field set.
4. Record of voltage sensitivity for each ionization detector head as recorded during final calibration.
5. All wiring diagrams shall show color coding of all connections and mounting dimensions of equipment.

3.9 DEMOLITION:

A. Upon completion of new fire alarm system, after final connections have been made, this contractor shall carefully remove all existing fire alarm apparatus where indicated, including fire alarm control panel, manual stations, audible signals, etc., and turn all such equipment over to Owner.

3.10 PAINTING AND PATCHING:

A. Contractor shall paint all exposed conduit to match adjacent surfaces. All surfaces or finishes damaged as a result of this work shall be properly patched, painted and/or repaired by trained craftsmen of the trade involved.

B. Contractor shall patch and paint where old devices are removed unless the old devices are in block walls or in concrete, where the Contractor shall provide blank plates on boxes. Blank plates shall be painted to match adjacent surfaces.

END OF SECTION 283112